Show all work on a separate sheet of paper. Make sure to study your notes and homework as well.

1. Sketch each function using a minimum of 2 points. For each graph, state the domain, range, intercepts, and the equations of any asymptotes.

a.
$$y = \frac{1}{(x+4)^2} - 2$$

c.
$$y = \frac{1}{-(x+3)} + 1$$

b.
$$y = -\frac{1}{x+2}$$

d.
$$y = -\frac{3}{x^2}$$

2. Sketch each function. For each graph, state the domain, range, intercepts, coordinates of any holes, and the equations of any asymptotes.

$$a. \quad y = \frac{x^3 - 1}{x - 1}$$

c.
$$y = \frac{x^3 - 3x^2 - 4x + 12}{3 - x}$$

b.
$$y = \frac{x-4}{x^2-16}$$

d.
$$y = \frac{2 - 5x - 3x^2}{x + 2}$$

3. Complete the chart below.

Function	Hole(s)	Vertical Asymptote(s)	Horizontal Asymptote	Oblique Asymptote	x- intercept(s)	y-intercept
$y = \frac{3-x}{x^2-9}$			87		-	,
$y = \frac{3x^4}{x^4 + x}$						
$y = \frac{x^2 + 2x - 24}{x + 6}$., .
$y = \frac{x^2 + 3x + 2}{x - 2}$						
$y = \frac{x^3 - 3x^2}{x^2 - 1}$						