Name:
AP Calculus AB - Introduction to Related Rates

Date:
Ms. Loughran

1. Given $y=4 x^{3}-3 x^{2}-9 x+1$, find $\frac{d y}{d x}$.
2. Given $y=4 w^{3}-3 w^{2}-9 w+1$, find $\frac{d y}{d w}$.
3. Given $v=4 m^{3}-3 m^{2}-9 m+1$, find $\frac{d v}{d m}$.
4. Given $y=4 x^{3}-3 x^{2}-9 x+1$, find $\frac{d y}{d t}$.
5. Given $P=2 L+2 W$, find $\frac{d P}{d t}$.
6. Given $A=\pi r^{2}$, find $\frac{d A}{d t}$.
7. Given $V=\frac{4}{3} \pi r^{3}$, find $\frac{d V}{d t}$.
8. Given $V=\pi r^{2} h$, find $\frac{d V}{d t}$.
9. Given $V=\frac{1}{3} \pi r^{2} h$, find $\frac{d V}{d t}$.
10. Given $c^{2}=a^{2}+b^{2}$, find $\frac{d c}{d t}$.

Now for our very first related rates problem....
11. Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is the area of the spill increasing when the radius of the spill is 60 ft ?
12. A 17 ft ladder is leaning against a wall. If the bottom of the ladder is pulled along the ground away from the wall at a constant rate of $5 \mathrm{ft} / \mathrm{s}$. How fast will the top of the ladder be moving down the wall when it is 8 ft above the ground?
13. A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft from the lift out point. At the moment the range finder's elevation angle is $\frac{\pi}{4}$, the angle is increasing at the rate of .14 radians per minute. How fast is the balloon rising at that moment?

AP Calculus AB: Related Rates Intro Homework

1. A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of $3 \mathrm{ft} / \mathrm{s}$. How rapidly is the area enclosed by the ripple increasing at the end of 10 s ?
2. A spherical balloon is to be deflated so that its radius decreases at a constant rate of 15 $\mathrm{cm} / \mathrm{min}$. At what rate must air be removed when the radius is 9 cm ?
3. A 13-ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a rate of $2 \mathrm{ft} / \mathrm{s}$, how fast will the foot be moving away from the wall when the top is 5 ft above the ground?
