Name:
AP Talc AB: Optimization
\qquad

Date:
Ms. Loughran

Do Now

1. A rectangular plot of land is to be fenced in using two kinds of fencing. Two opposite sides will use heavy-duty fencing selling for $\$ 3$ a foot, while the remaining two sides will use standard fencing selling for $\$ 2$ a foot. What are the dimensions of the rectangular plot of greatest area that can be fenced in at a cost of $\$ 6000$?

$500 f+b y \frac{6000-6(5)}{4} f+\quad A=l w$

More Practice

1. $\int \cos (8 x) d x=$

$$
\begin{aligned}
u & =8 x \\
d u & =8 d x \\
\frac{d u}{8} & =d x \\
\frac{1}{8} \int \cos u d u= & \frac{1}{8} \sin u+c \\
& \frac{1}{8} \sin (8 x)+c
\end{aligned}
$$

3. $\int \frac{1}{\sqrt{1-x^{2}}} d x=$

$$
\begin{aligned}
& \sin ^{-1}(x)+C \\
& \arcsin (x)+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \int \frac{5}{1+x^{2}} d x= \\
& 5 \int \frac{1}{1+x^{2}} d x \\
& 5 \tan ^{-1} x+C
\end{aligned}
$$

4. $\int \sqrt{x-1} \sqrt{x+1} x d x$
$u=x^{2}-1$
$\int \sqrt{x^{2}-1} x d x$

$$
d u=2 x d x
$$ $\frac{d u}{2}=x d x$

$\frac{1}{2} \int u^{\frac{1}{2}} d u$
$\frac{1}{2} \cdot \frac{7}{3} u^{3 / 2}+c$
6.

$$
\begin{array}{ll}
\underbrace{\frac{1}{3}}_{\left(e^{2 x}+1\right) e^{-x}}\left(x^{2}-1\right)^{3 / 2}+c \\
\int\left(e^{x}+e^{-x}\right) d x & \int e^{u} d u \\
\int e^{x} d x+\int_{-x} e^{-x} d x & \begin{array}{l}
-e^{u}+c \\
u=-x \\
\text { du }
\end{array} \\
\text { du }=-d x
\end{array}
$$

More Practice

1. $\int \cos (8 x) d x=$
2. $\int \frac{5}{1+x^{2}} d x=$
3. $\int \frac{1}{\sqrt{1-x^{2}}} d x=$
4. $\int \sqrt{x-1} \sqrt{x+1} x d x=$
5. $\int \sqrt{3+x^{2}} x^{2} x d x$
6. $\int \sqrt{3+x^{2}} x^{3} d x=\underset{\substack{x \\ u=3+x^{2}}}{\text { nedenternsat } u} \begin{aligned} & u=3+x^{2}\end{aligned} \quad$ 6. $\int\left(e^{2 x}+1\right) e^{-x} d x=$
$u=3+x^{2} \quad u=3+x^{2}$
$d u=2 x d x \quad u-3=x^{2}$
$\frac{d u}{2}=x d x$
$\frac{1}{2} \int u^{\frac{1}{2}}(u-3) d u$
$\frac{1}{2} \int\left(u^{3 / 2}-3 u^{\frac{1}{2}}\right) d u=\frac{1}{2}\left[\frac{2}{5} u^{5 / 2}-D \cdot \frac{2}{3} u^{3 / 2}\right]+C$
7. $\int x^{2} \sec ^{2}\left(x^{3}\right) d x=$

$$
\frac{1}{5}(3+x)^{5 / 2}-(3+x)^{3 / 2}+C \quad 8 \cdot \int \cos (4 \theta) \sqrt{2-\sin (4 \theta)} d \theta=
$$

