CALCULUS AB
Do Now:
Time- $\mathbf{4 5}$ minutes
Number of problems- 3
A graphing calculator is required for some problems or parts of problems.


1. Caren rides her bicycle along a straight road from home to school, starting at home at time $t=0$ minutes and arriving at school at time $t=12$ minutes. During the time interval $0 \leq t \leq 12$ minutes, her velocity $v(t)$, in miles per minute, is modeled by the piecewise-linear function whose graph is shown above.
(a) Find the acceleration of Caren's bicycle at time $t=7.5$ minutes. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{0}^{12}|v(t)| d t$ in terms of Caren's trip. Find the value of
 $\int_{0}^{12}|v(t)| d t$ o to to 12 min . $\int_{S}|v(t)| d t=.2+.2+.15+.3+.25+.6+1$ miles $=1.8$ miles
(c) Shortly after leaving home, Care realizes she left her calculus homework at home, and she returns to get it. At what time does she turn around to go back home? Give a reason for your answer.
(d) Larry also rides his bicycle along a straight road from home to school in 12 minutes. His velocity is modeled by the function $w$ given by $w(t)=\frac{\pi}{15} \sin \left(\frac{\pi}{12} t\right)$, where $w(t)$ is in miles per minute for $0 \leq t \leq 12$ minutes. Who lives closer to school: Caren or Larry? Show the work that leads to your answer.

WRITE ALL WORK IN THE PINK EXAM BOOKLET.
c) At 2 minutes $b \mid c$ velocity changes at $t=2$


$$
\begin{aligned}
& \left\{\frac{1}{b-a} \int_{a}^{b} v(t) d t\right)=\frac{x(b)-x(a)}{b-a} \\
& {\left[\frac{1}{b-a} \int_{a}^{b} a(t) d t=\frac{v(b)-v(a)}{b-a}\right.}
\end{aligned}
$$

Name:
AP Calculus: The Definite Integral as an Average

Date:
Ms. Loughran

We know how to find the average of $n$ numbers: add them and divide by $n$. But how do we find the average value of a continuously varying function? Let us consider an example. Suppose $C=f(t)$ is the temperature at time $t$, measured in hours since midnight, and that we want to calculate the average temperature over a 24 -hour period. One way to start would be to average the temperatures at $n$ times, $t_{1}, t_{2}, \ldots, t_{n}$, during the day.

$$
\text { Average temperature } \approx \frac{f\left(t_{1}\right)+f\left(t_{2}\right)+\cdots+f\left(t_{n}\right)}{n}
$$

The larger we make $n$, the better the approximation. We can rewrite this expression as a Riemann sum over the interval $0 \leq t \leq 24$ if we use the fact that $\Delta t=24 / n$, so $n=24 / \Delta t$ :

$$
\begin{aligned}
\text { Average temperature } & \approx \frac{f\left(t_{1}\right)+f\left(t_{2}\right)+\cdots+f\left(t_{n}\right)}{24 / \Delta t} \\
& =\frac{f\left(t_{1}\right) \Delta t+f\left(t_{2}\right) \Delta t+\cdots+f\left(t_{n}\right) \Delta t}{24} \\
& =\frac{1}{24} \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t .
\end{aligned}
$$

As $n \rightarrow \infty$, the Riemann sum tends towards an integral and also approximates the average temper-
ature better. Thus, in the limit

$$
\begin{aligned}
\text { Average temperature } & =\lim _{n \rightarrow \infty} \frac{1}{24} \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t \\
& =\frac{1}{24} \int_{0}^{24} f(t) d t .
\end{aligned}
$$

Thus we have found a way of expressing the average temperature in terms of an integral. Generalizing
for any function $f$, we define

$$
\begin{aligned}
& \text { Average value of } f=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \quad \text { from } a \text { to } b
\end{aligned}
$$

## How to Visualize the Average on a Graph

The definition of average value tells us that

$$
\text { (Average value of } f) \cdot(b-a)=\int_{a}^{b} f(x) d x
$$

Thus, if we interpret the integral as the area under the graph of $f$, then we can think of the average value of $f$ as the height of the rectangle with the same area that is on the same base, $(b-a)$. (See
Figure 3.18.) Figure 3.18.)


Figure 3.18: Area and average value

Practice

1. Find the average value of $f(x)=x^{2}$ from $x=2$ to $x=4$.

$$
\begin{aligned}
\frac{1}{4-2} \int_{2} x^{2} d x=\frac{1}{2}\left[\left.\frac{x^{3}}{3}\right|_{2} ^{4}\right]=\frac{1}{2}[ & \left.\frac{64}{3}-\frac{8}{3}\right] \\
& =\frac{1}{2}\left(\frac{56}{3}\right)=\frac{28}{3}
\end{aligned}
$$

2. Find the average value of $f(x)=\sqrt{x}$ from $x=0$ to $x=16$.
3. Find the average value of $f(x)=\cos x$ from $x=0$ to $x=\pi$.

$$
\frac{1}{\pi} \int_{0} \cos x d x=\frac{1}{\pi}\left[\left.\sin x\right|_{0} ^{\pi}\right]=\frac{1}{\pi}[0-0]=0
$$

5. Find the average velocity of $v(t)=t^{2}-2$ on the interval $[-2,3]$.

$$
\begin{aligned}
\frac{1}{5} \int_{-2}^{1}\left(t^{2}-2\right) d t & =\frac{1}{5}\left[\frac{t^{3}}{3}-\left.2 t\right|_{-2} ^{3}\right] \\
& =\frac{1}{3}
\end{aligned}
$$

2003 AB 5 Form B (Skip b and c)


Let $f$ be a function defined on the closed interval [ 0,7$]$ The graph of
is shown above. Let $g$ be the function given b $\left(g(x)=\int_{2}^{x} f(t) d t\right.$.
(a) Find $g(3) \cdot g^{\prime}(3)$, and $g^{\prime \prime}(3) . g^{\prime}$
(b) Find the average rate of chang: of $g$ on the interval $0 \leq x \leq 3$.
(c) For how many values $c$, where $0<c<3$, is $g^{\prime}(q)$ equal to
your reasoning.
(d) Find the $x$-coordinate ${ }^{9}$ each point of inflection of the graph
a)

$$
g(3)=\int_{2} f(t) d t=\frac{1}{2}(1)(2+4)=3
$$

$$
\begin{aligned}
& g^{\prime}(3)=f(3)=2 \\
& g^{\prime \prime}(3)=-2
\end{aligned}
$$

d) $x=2,5 \mathrm{~b} / \mathrm{c}$

or $\searrow$ o to $\uparrow$ around those $x$ values.

Homework 03-01

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $g(x)$ | $g^{\prime}(x)$ | h(X) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 4 | 2 | 5 | 3 |
| 2 | 9 | 2 | 3 | 1 | 4 |
| 3 | 10 | -4 | 4 | 2 | -7 |
| 4 | -1 | 3 | 6 | 7 |  |

3. The functions $f$ and $g$ are differentiable for all real numbers, and $g$ is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of $x$. The function $h$ is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value $r$ for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value $c$ for $1<c<3$ such that $h^{\prime}(c)=-5$.
(c) Let $w$ be the function given by $w(x)=\int_{1}^{g(x)} f(t) d t$. Find the value of $w^{\prime}(3)$,

$$
\begin{aligned}
& \text { ven by } w(x)=\int_{1} f(t) d t \text {. Find the value of } w^{\prime}(3) \\
& w^{\prime}(x)=f\left(g^{\prime}(x)\right) \cdot g^{\prime}(x) \quad w^{\prime}(3)=f(g(3)) \cdot g^{\prime}(3)=f(4) \cdot g^{\prime}(3)=-1 \cdot 2=-2
\end{aligned}
$$

(d) If $g^{-1}$ is the inverse function of $g$, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.

$$
\begin{aligned}
& g^{-1}(2)=1 \leftarrow p \text { int } \\
& \text { ned }\left(g^{-1}\right)^{\prime}(2)=
\end{aligned}
$$



WRITE ALL WORK IN THE PINK EXAM BO@KLET.

$$
y-1=\frac{1}{5}(x-2)
$$

END OF PART A OF SECTION II


CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems- 3
No calculator is allowed for these problems.

4. Let $f$ be a function defined on the closed interval $-5 \leq x \leq 5$ with $f(1)=3$. The graph of $f^{\prime}$, the derivative of $f$, consists of two semicircles and two line segments, as shown above.
(a) For $-5<x<5$, find all values $x$ at which $f$ has a relative maximum. Justify your answer.
(b) For $-5<x<5$, find all values $x$ at which the graph of $f$ has a point of inflection. Justify your answer.
(c) Find all intervals on which the graph of $f$ is concave up and also has positive slope. Explain your reasoning.
(d) Find the absolute minimum value of $f(x)$ over the closed interval $-5 \leq x \leq 5$. Explain your reasoning.

b) f has a point of infection whir f"chnges sign f
 c) $f$ is cu whore $f^{\prime \prime}$ is positive, $f^{\prime} 7$ and positive

$$
\begin{aligned}
& \int_{-5}^{1} f^{\prime}(x) d x=f(1)-f(-5) \\
& \frac{\pi}{2}-2 \pi=3-f(-5) \\
& f^{5}(-5)=3-\frac{\pi}{2}+2 \pi \\
& \int_{1}^{\prime} f^{\prime}(x) d x=f(5)-f(1) \\
& 13-\frac{1}{2}=f(5)-3 \\
& 6-\frac{1}{2}=f(5) \\
& \therefore \text { Abs min is } 3
\end{aligned}
$$ d) The abs. mmamim of his to occurat



2008 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

$$
\begin{aligned}
& \int_{-3}^{2} g^{\prime}(x)=g(2)-g(-3) \\
& -\frac{1}{2}(4)(2)+\frac{1}{2}(3)(1)=5-g(-3) \\
& -4+\frac{3}{2}=5-g(-3) \\
& g(-3)=5+4-\frac{3}{2}
\end{aligned}
$$



$$
\begin{gathered}
\int_{2}^{7} g^{\prime}(x) d x=g(7)-g(2) \\
-\frac{1}{2}(4)(2)+\frac{1}{2}(1)(1)=g(7)-5 \\
-4+\frac{1}{2}+5=g(7) \\
1+\frac{1}{2}=g(7)
\end{gathered}
$$

Graph of $g^{\prime}$
5. Let $g$ be a continuous function with $g(2)=5$. The graph of the piecewise-linear function $g^{\prime}$, the derivative of $g$, is shown above for $-3 \leq x \leq 7$.
(a) Find the $x$-coordinate of all points of inflection of the graph of $y=g(x)$ for $-3<x<7$. Justify your answer.
(b) Find the absolute maximum value of $g$ on the interval $-3 \leq x \leq 7$. Justify your answer.
(c) Find the average rate of change of $g(x)$ on the interval $-3 \leq x \leq 7$.
(d) Find the average rate of change of $g^{\prime}(x)$ on the interval $-3 \leq x \leq 7$. Does the Mean Value Theorem applied on the interval $-3 \leq x \leq 7$ guarantee a value of $c$, for $-3<c<7$, such that $g^{\prime \prime}(c)$ is equal to this average rate of change? Why or why not?
a) $g(x)$ has a point of inflection where $g^{\prime \prime}$ a) $g(x)$ has a point of inflection where chines
chagos sign. $g^{\prime \prime}$ changes sign where $g^{\prime}$ chronge
from $\lambda$ hi $\searrow$ or $\searrow$ so $x=1$, 4 .
b) By the candidate test, an absolute maximum occurs at an undpont or relative maximum

$$
\begin{aligned}
& g(-3)=5+4-\frac{3}{2} \\
& g(2)=5 \\
& y(7)=1+\frac{1}{2}
\end{aligned}
$$

$\therefore$ abs max is $5+4-\frac{3}{2}$
c) $\frac{g(7)-g(-3)}{7-(-3)}=\frac{\frac{3}{2}-\left(q-\frac{3}{2}\right)}{10}=\frac{\frac{3}{2}-\frac{15}{2}}{10}=\frac{\frac{-12}{2}}{10}=\frac{-6}{10}$
d) $\frac{g^{\prime}(7)-g^{\prime}(-3)}{7-(-3)}=\frac{1-(-4)}{10}=\frac{5}{10}=\frac{1}{2}$

No the MVT does not apply here because $g^{\prime}(x)$ is not differentiable on $(-3,7)$

