2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

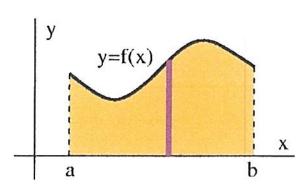
Do Now:

_					
x	2	3	5	8	13
f(x)	1	4	-2	3	6

- 5. Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \le x \le 13$. = -3
 - (a) Estimate f'(4). Show the work that leads to your answer.
 - (b) Evaluate $\int_{2}^{13} (3 5f'(x)) dx$. Show the work that leads to your answer.
 - (c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) dx$. Show the work that leads to your answer. $1(1) + 2(4) + 3(-2) + 5(3)^{2} =$
 - (d) Suppose f'(5) = 3 and f''(x) < 0 for all x in the closed interval $5 \le x \le 8$. Use the line tangent to the graph of f at x = 5 to show that $f(7) \le 4$. Use the secant line for the graph of f on $5 \le x \le 8$ to show that $f(7) \ge \frac{4}{3}$.

b)
$$\int_{a}^{3} 3 dx - 5 \int f'(x) dx$$
 d) $y + 2 = 3(x - 5)$
 $y = 3(x - 5) - 2$
 $y = 3(x - 5) - 2$
 $y = 3(x - 5) - 2$
 $y = 4$
Since $f''(x) < 0$, f is
 $y = 4$
Since $f''(x) < 0$, f is
 $y = 4$
Since $f''(x) < 0$, f is
 $y = 4$
 f is
 $y = 5$
 f is
 $y = 5$
 $f(x - 5) - 2$
 $y = 5$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 $y = 5$
 $f(x - 5) - 2$
 f is
 f is
 $f(x - 5) - 2$
 f is
 f is
 f is
 $f(x - 5) - 2$
 f is
 f is
 $f(x - 5) - 2$
 f is
 f

Name: ______ AP Calculus AB: Area Between 2 Curves Date:_____ Ms. Loughran



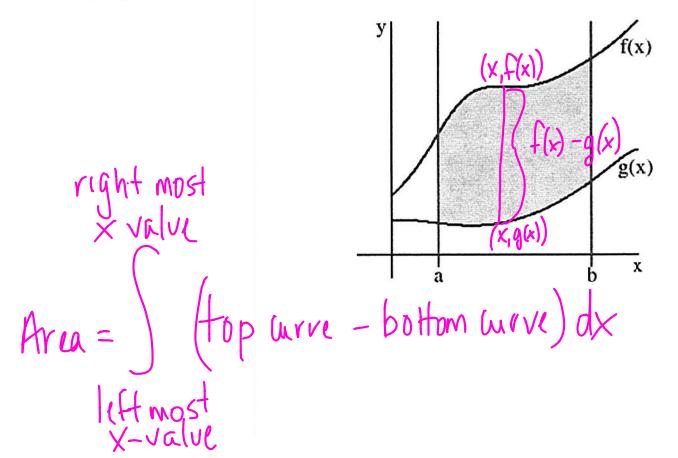
If a function f is continuous on [a,b] and if $f(x) \ge 0$ for all x in [a,b] then the area under the curve y = f(x) over the interval [a,b] is defined by: $Area = \lim \sum_{k=1}^{n} f(x_k) \Delta x$

Which can be rewritten as :
$$Area = \int_{a}^{b} f(x)dx \rightarrow b$$

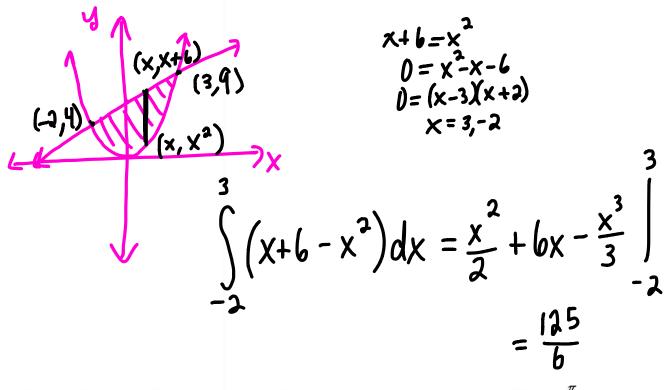
What if the region is not bounded by the *x*-axis? What if the area is between 2 curves?

Vertical Strip:

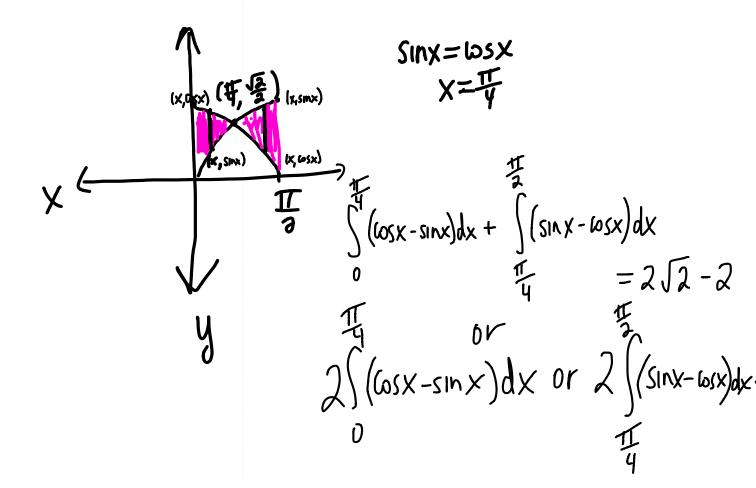
Remember:



1. Find the area of the region bounded by y = x + 6 and $y = x^2$.



2. Find the area of the region bounded by $y = \sin x$ and $y = \cos x$ from x = 0 to $x = \frac{\pi}{2}$.



Mr. Lee recorded solutions for the 1998 Exam and he kindly shared them with us.

https://www.youtube.com/watch?v=XcCIMLSyUr8 (#s 1-16) https://www.youtube.com/watch?v=1acRCmjyXAI (#s 17-28) https://youtu.be/LOSV5tmkDIo. (#s 76-92)