2009 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS
Do Now:

x	2	3	5	8	13
$f(x)$	1	4	-2	3	6

5. Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \leq x \leq 13$.
(a) Estimate $f^{\prime}(4)$. Show the work that leads to your answer.

$$
\frac{f(5)-f(3)}{5-3}=\frac{-2-4}{2}=-3
$$

(b) Evaluate $\int_{2}^{13}\left(3-5 f^{\prime}(x)\right) d x$. Show the work that leads to your answer.
(c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) \widetilde{d x}$. Show the work that leads to your answer. $\quad 1(1)+2(4)+3(-2)+5(3)^{2}=18$ (d) Suppose $f^{\prime}(5)=3$ and $f^{\prime \prime}(x)<0$ or all x in the closed interval $5 \leq x \leq 8$. Use the line tangent to the graph of f at $x=5$ to show that $f(7) \leq 4$. Use the secant line for the graph of f on $5 \leq x \leq 8$ to show that $f(7) \geq \frac{4}{3}$.

Name:
AP Calculus AB: Area Between 2 Curves

Date:
Ms. Loughran

Remember:

If a function f is continuous on $[a, b]$ and if $f(x) \geq 0$ for all x in $[a, b]$ then the area under the curve $y=f(x)$ over the interval $[a, b]$ is defined by:

$$
\text { Area }=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

Which can be rewritten as : Area $=\int_{a}^{b} f(x) d x \rightarrow$ height

What if the region is not bounded by the x-axis? What if the area is between 2 curves?

Vertical Strip:

Area $=\int($ top curve - bottom curve $) d x$

1. Find the area of the region bounded by $y=x+6$ and $y=x^{2}$.

2. Find the area of the region bounded by $y=\sin x$ and $y=\cos x$ from $x=0$ to $x=\frac{\pi}{2}$.

Mr. Lee recorded solutions for the 1998 Exam and he kindly shared them with us.

https://www.youtube.com/watch?v=XcCIMLSyUr8 (\#s 1-16) https://www.youtube.com/watch?v=1acRCmjyXAI (\#s 17-28) https://youtu.be/LOSV5tmkDlo. (\#s 76-92)

