Name: \qquad y Date: \qquad
Do now: $|3 x-2|=\left\{\begin{array}{cc}3 x-2 & 3 x-2 \geqslant 0, x^{2} \geqslant 2 / 3 \\ -(3 x-2), & x^{2} \leqslant \frac{2}{3} \text { or } \\ \leftarrow\end{array}\right.$

1. $\int_{0}^{3}|3 x-2| d x=$
$-\int_{0}^{\frac{2}{3}}(3 x-2) d x+\int_{0}^{3}(3 x-2) d x$

2. Given $h(x)=\left\{\begin{array}{ll}x-1^{2 / 3} & -1<x<2 \\ x & 2 \leq x<4 \\ x^{2} & x \geq 4\end{array}\right.$, find $\int_{-1}^{5} h(x) d x=$

Name:
AP Calculus AB: Total Distance

Date: \qquad
Ms. Loughran

Let $s(t)$ represent the position of a particle at time t. We know that $s^{\prime}(t)=v(t)$. In other words,
the devi value of position is velocity.

What does $\int_{t_{1}}^{t_{2}} v(t) d t$ represent?

$$
\begin{aligned}
& s\left(t_{1}\right)-s\left(t_{2}\right) \\
& \text { displacement }
\end{aligned}
$$

How would we find the total distance traveled by the particle over the interval $\left[t_{1}, t_{2}\right]$?

Therefore, total distance $=\int_{t_{1}}^{t_{2}}(v(t) d t) d t$
If $v \geq 0$,

$$
\text { displacement }=\text { total distance }
$$

Examples:

1. A particle moves along the x-axis according to $s(t)=2 t^{3}-21 t^{2}+60 t-14$. Find the total distance traveled from $t=0$ to $t=7$.

$$
v(t)=6 t^{2}-42 t+60
$$

7

$$
\begin{aligned}
& \int_{0}\left|6 t^{2}-42 t+60\right| d t \\
& \int^{2}\left(6 t^{2}-42 t+60\right) d t+\int^{2}\left(6 t^{2}-4 d t+60\right)+\int^{7} \quad\left(6 t^{2}-42 t+60\right) d t \\
& 0
\end{aligned}
$$

$T D: \int|v(t)| d t$
2. A particle moves along the x-axis with acceleration $a(t)=2 t-3, t \geq 0$. At $t=0, \mathrm{v}=2$. Find the total distance traveled from $t=0$ to $t=3$.

$$
\begin{aligned}
& v(t)=\int(2 t-3) d t=t^{2}-3 t+c \\
& 2=0^{2}-3(0)+c \\
& 2=c \\
& v(t)=t^{2}-3 t+2
\end{aligned}
$$

$$
\int_{0}^{3}\left|t^{2}-3 t+2\right| d t
$$

by hand $t^{2}-3 t+2=0$

$$
(t-2)(t-1)=0
$$

$$
t=1,2
$$

$$
\int_{0}^{1}\left(t^{2}-3 t+2\right) d t+\int_{2}^{1}\left(t^{2}-3 t+2\right) d t+\int_{2}^{3}\left(t^{2}-3 t+2\right) d t
$$

use calculator: 3

$$
\int_{0}^{3}\left|t^{2}-3 t+2\right| d t=1.833 \text { or } \frac{11}{6}
$$

Name:
AP Call

Date: \qquad
Ms. Loughran

1982 AB 1

A particle moves along the X-axis in such a way that Its acceleration at time t for $t>0$ is given by $a(t)=\frac{3}{t^{2}}$. When $t=1$, the position of the particle is 6 and the velocity is 2 .
(a) Write an equation for the velocity, $v(t)$, of the particle for all $:>0$.
(b) Write an equation for the position, $x(t)$, of the particle for all $i>0$.
(c) Find the position of the particle when $t=e$.

$$
\begin{aligned}
a(t) & =3 t^{-2} \\
v(t) & =\int a(t) d t \\
v(t) & =-3 t^{-1}+C \\
2 & =-3(1)^{-1}+C \\
2 & =-3+c \\
5 & =c
\end{aligned}
$$

(a)

$$
\begin{aligned}
v(t)= & -3 t^{-1}+5 \\
& \frac{-3}{t}+5 \\
x(t)= & \int v(t) d t \\
& \int\left(-3 t^{-1}+5\right) d t \\
x(t)= & -3 \ln |t|+5 t+c \\
6= & -3 \ln |1|+5(1)+c \\
6= & -3(0)+5+c \\
& 1=c
\end{aligned}
$$

(b)
since $t>0$

$$
\begin{aligned}
& x(t)=-3 \ln t+5 x^{+1} \\
& 3 \ln |t|+5 t+1
\end{aligned} \underbrace{\text { don then }}
$$

$$
x(t)=-3 \ln |t|+5 t+1
$$

(c) $x(e)=-3 \ln |e|+5 c+1$

1998: AB-4
Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
(a) Find the slope of the graph of f at the point where $x=1$.
(b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
(c) Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
(d) Use your solution from part (c) to find $f(1.2)$.
(a) $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ and $f(1)=\left.4 \Longrightarrow \frac{d y}{d x}\right|_{(1,(x)}=\frac{1}{2}$
(b) The equation of the tangent: $y-4=\frac{1}{2}(x-1)$ or $y=\frac{1}{2} x+\frac{7}{2}$

$$
f(1.2) \approx \frac{1}{2}(1.2)+\frac{7}{2}=4.1
$$

(c) $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y} \Longrightarrow \int 2 y d y=\int\left(3 x^{2}+1\right) d x \Longrightarrow y^{2}=x^{3}+x+C$

$$
f(1)=4 \Longrightarrow C=14 \Longrightarrow f(x)=\sqrt{x^{3}+x+14}
$$

(d) $f(1.2) \approx 4.114$

Rectilinear Motion Revisited Packet

For any questions in this packet prior to $\mathbf{2 0 0 0}$ do not use the graphing calculator. (Use of graphing calculator on AP exam began in 1995.)

Then follow these guidelines:
2000-2010 \#s 1-3 are calculator active and \#s 4-6 are non-calculator 2011-present \#s 1-2 are calculator active and 3-6 are non-calculator
$1987 \mathrm{AB1}$ did on 02-27
A particle moves along the x-axis so that its acceleration at any time t is given by $a(t)=6 t-18$. At time $t=0$ the velocity of the particle is $v(0)=24$, and at time $t=1$, its position is $x(1)=20$.
(a) Write an expression for the velocity $v(t)$ of the particle at any time t.
(b) For what values of t is the particle at rest?
(c) Write an expression for the position $x(t)$ of the particle at any time t.
(d) Find the total distance traveled by the particle from $t=1$ to $t=3$.

1991 BC1

A particle moves on the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=12 t^{2}-36 t+15$. At $t=1$, the particle is at the origin.
(a) Find the position $x(t)$ of the particle at any time $t \geq 0$.
(b) Find all values of t for which the particle is at rest.
(c) Find the maximum velocity of the particle for $0 \leq t \leq 2$.
(d) Find the total distance traveled by the particle from $t=0$ to $t=2$.

1997 AB1

A particle moves along the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=3 t^{2}-2 t-1$. The position $x(t)$ is 5 for $t=2$.
(a) Write a polynomial expression for the position of the particle at any time $t \geq 0$.
(b) For what values of $t, 0 \leq t \leq 3$, is the particle's instantaneous velocity the same as its average velocity on the closed interval $[0,3]$?
(c) Find the total distance traveled by the particle from time $t=0$ until time $t=3$.

1. A particle moves on the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=12 t^{2}-36 t+15$. At $t=1$, the particle is at the origin.
(a) Find the position $x(t)$ of the particle at any time $t \geq 0$.
(b) Find all values of t for which the particle is at rest.
(c) Find the maximum velocity of the particle for $0 \leq t \leq 2$.
(d) Find the total distance traveled by the particle from $t=0$ to $t=2$.
a.)

$$
\begin{aligned}
& x(t)=\int v d t=4 t^{3}-18 t^{2}+15 t+c \\
& x(1)=0=4-18+15+c \Rightarrow c=-1 \\
& x(t)=4 t^{3}-18 t^{2}+15 t-1
\end{aligned}
$$

b.) Partide is at rest when $v(t)=0$

$$
\begin{aligned}
& v(t)=3\left(4 t^{2}-12 t+5\right)=3(2 t-1)(2 t-5) \\
& v(t)=0 \text { when } t=\frac{1}{2}, \frac{5}{2}
\end{aligned}
$$

c.) $v^{\prime}(t)=3(8 t-12) \Rightarrow v^{\prime}(t)=0$ when $t=\frac{3}{2}, 0 \leq t \leq 2$

$v\left(\frac{3}{2}\right)$ is an absol.msn. $\Rightarrow v(0)$ or $v(2)$ is an absol. max.

$$
v(0)=15 ; \quad v(2)=3(16-24+5)=-9
$$

V has an absol. max. of 15 at $t=0$
d.)

$$
\begin{aligned}
& \text { d.) } \left.\begin{array}{l|ccc}
t & x(t) \\
\hline & -1 \\
\frac{1}{2} & 5 / 2 & 3.5 \\
2 & -11
\end{array}\right\} \begin{array}{ll}
13.5
\end{array} \Rightarrow \text { Total dist. }=17 \\
& \text { OR Total dist. }=\left|\int_{0}^{1 / 2}\left(12 t^{2}-36 t+15\right) d t\right|+\left|\int_{i / 2}^{2}\left(12 t^{2}-36 t+15\right) d t\right|
\end{aligned}
$$

