CALCULUS AB
SECTION II, Part B
Time- 60 minutes
Number of problems -4
a)

No calculator is allowed for these problems.
b) $g^{\prime}(-3)=f(-3)=2$
$g^{\prime \prime}(-3)=f^{\prime \prime}(-3)=1$

$$
\begin{aligned}
& g(-2)=-\int_{-2}^{1} \mathrm{~S}(\mathrm{t}) \mathrm{A}= \\
& \left.-\left(\frac{1}{2}\left(1,(3)-\frac{\pi}{2}\right)^{1}\right)^{2}\right) \\
& -\left(\frac{3}{2}-\frac{\pi}{2}\right)
\end{aligned}
$$

3. Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t . \quad g^{\prime}(x)=f(X)$
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.
c) at $x=-1$, rel max bl $g^{\prime}(x)$ changes sign fam $+10-$ around $x=-1$
at $x=1$ netter bile $g^{\prime}(x)$ does 't change sign around $x=1$
d) $g^{\prime \prime}-6+$ or +-
$g^{\prime} \downarrow フ$
© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Finishing up from yesterday...
6. Find a vertical line $x=k$ that divides the area enclosed by $x=\sqrt{y}, x=2$ and $y=0$ into 2 equal parts.

$$
\left.\begin{array}{rl}
x^{2} & =y \\
x & = \pm \sqrt{y} \text { halfof perdota graph }
\end{array}\right\} \begin{aligned}
\int_{0}^{2}\left(x^{2}-0\right) d x & =2\left(\left(x^{2}-0\right) d x\right. \\
\left.\frac{x^{3}}{3}\right|_{0} ^{2} & =2\left[\left.\frac{x^{3}}{3}\right|_{0} ^{k}\right] \\
\frac{8}{3} & =\frac{2 k^{3}}{3} \\
8 & =2 k^{3} \\
4 & =k^{3} \\
\sqrt[3]{4} & =k
\end{aligned}
$$

2000 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB
SECTION II, Part A
Time- $\mathbf{4 5}$ minutes
Number of problems- 3

A graphing calculator is required for some problems or parts of problems.

1. Let R be the shaded region in the first quadrant enclosed by the graphs of $y=e^{-x^{2}}, y=1-\cos x$, and the y-axis, as shown in the figure above.
(a) Find the area of the region R.
(b) Find the volume of the solid generated when the region R is revolved about the x-axis.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

2001 APi CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB
SECTION II, Part A
Time- 45 minutes
Number of problems- 3

A graphing calculator is required for some problems or parts of problems.

1. Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the $y=2-x^{3}$ and $y=\tan x$.
(a) Find the area of R.
(b) Find the area of S.
(c) Find the volume of the solid generated when S is revolved about the x-axis.

Homework 03-13

$$
\begin{aligned}
& -x=\sqrt{2-x} \text {. } \\
& x^{2}=2-x \text {, } \\
& y=\sqrt{2-x} \\
& x^{2}+x-2=0 \quad y^{2}=2-x \\
& \begin{array}{ll}
(x+2)(x-1)=0 & y^{2}-2=-x \\
x=-2 x=1 & -y^{2}+2=x
\end{array} \\
& y=2 \quad y=-1 \quad-y^{2}+2=x \\
& \int_{02}^{2}-y^{2}+2-(-y) d y \\
& \int_{0}^{02}-y^{2}+2+y d y \\
& \int_{0}^{0}-y^{2} d y+\int_{0}^{2} 2 d y+\int_{0}^{2} y d y \\
& y=-x \\
& -y=x \\
& -\frac{1}{3}(2)^{3}-\left(-\frac{1}{3}(0)^{3}\right)+2(2)-2(0)+\frac{1}{2}(2)^{2}-\frac{1}{2}(0)^{2} \\
& -8 / 3-0+4-0+2=-8 / 3+6=10 / 3
\end{aligned}
$$

$$
\int_{-3}^{3}\left(9-x^{2}\right) d x=2 \int_{-\sqrt{k}}^{\sqrt{k}}\left(k-x^{2}\right) d x
$$

$$
\left.\left.x^{2}=k \quad 9 x-\frac{1}{3} x^{3}\right]_{-3}^{3}=2 \cdot k x-\frac{1}{3} x^{3}\right]_{-27}^{\sqrt{k}}
$$

$$
\begin{aligned}
& x^{2}=k \\
& x=\sqrt{k}
\end{aligned}
$$

$$
x=\sqrt{k}
$$

$$
9(3)-\frac{1}{3}(3)^{3}-\left(9(3)-\frac{1}{3}(-3)^{3}\right)
$$

$$
27-8+27-8
$$

$$
\begin{aligned}
& 36=2 \cdot\left[k \cdot \sqrt{k}-\frac{1}{3}(\sqrt{k})^{3}-\left(k(-\sqrt{k})-\frac{1}{3}(-\sqrt{k})^{3}\right)\right. \\
& 36=2 \cdot\left(k^{3 / 2}-\frac{1}{3} k^{3 / 2}+k^{3 / 2}-\frac{1}{3} k^{3 / 2}\right) \\
& 36=2\left(2 k^{3 / 2}-2 / 3 k^{3 / 2}\right) \\
& 36=2\left(\frac{4}{3} k^{3 / 2}\right) \\
& \frac{3}{36}=\frac{4}{3} k^{3 / 2} \cdot 3 / 4 \\
& \frac{54}{4}=k^{3 / 2} \\
& \frac{27}{2}=k^{3 / 2} \\
& k=(27 / 2)^{2 / 3} \approx 5.669 .644 \\
& 5.670
\end{aligned}
$$

