Do Now:

5. Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \leq x \leq 13$.
(a) Estimate $f^{\prime}(4)$. Show the work that leads to your answer.

$$
f^{\prime}(4) \approx \frac{f(5)-f(3)}{5-3}=\frac{-2-4}{2}=-3
$$

(b) Evaluate $\int_{2}^{13}\left(3-5 f^{\prime}(x)\right) d x$. Show the work that leads to your answer.
(c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) d x$. Show the work that leads to your answer. $\quad(1)(1)+(2)(4)+(3)(-2)+(5)(3)=18$ (d) Suppose $f^{\prime}(5)=3$ and $f^{\prime \prime}(x)<0$ for all x in the closed interval $5 \leq x \leq 8$. Use the line tangent to the graph of f at $x=5$ to show that $f(7) \leq 4$. Use the secant line for the graph of f on $5 \leq x \leq 8$ to show that $f(7) \geq \frac{4}{3}$.

1313 WRITE ALL WORK IN THE PINK EXAM BOOKLET.
b) $\int_{2} 3 d x-5 \int f^{\prime}(x) d x$

$$
\text { d) } \begin{aligned}
f(5) & =3 \quad f(5)=-2 \\
y+2 & =3(x-5) \\
y+2 & =3(7-5) \\
y+2 & =6
\end{aligned}
$$

$$
3(13)-3(2)-5[6-1]
$$

$$
\begin{aligned}
33-25= & 8 \\
& (5,-2)
\end{aligned}
$$

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

$$
\begin{aligned}
& y+2=\frac{5}{3}(x-5) \\
& y+2=\frac{5}{3}(7-5) \\
& \text { GOON TO THE NEXT PAGE. } \\
& y+2=\frac{10}{3} \quad \text { Sine } f^{\prime \prime}(x)<0 \\
& y=\frac{4}{3} \quad \text { this cub be and undroppuxiadion }
\end{aligned}
$$

Name:
AP Calculus AB: Area Between 2 Curves

Date:
Ms. Loughran

Remember:

If a function f is continuous on $[a, b]$ and if $f(x) \geq 0$ for all x in $[a, b]$ then the area under the curve $y=f(x)$ over the interval $[a, b]$ is defined by:

$$
\text { Area }=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

Which can be rewritten as : Area $=\int_{a}^{b} f(x) d x$

What if the region is not bounded by the x-axis?
What if the area is between 2 curves?
vertical Strip: (every thing in terms of x)

a
\uparrow
left most
x-value

1. Find the area of the region bounded by $y=x+6$ and $y=x^{2}$.

pts of int.

$$
\begin{gathered}
x+6=x^{2} \\
0=x^{2}-x-6 \\
0=(x-3)(x+2) \\
x=3,-2
\end{gathered}
$$

2. Find the area of the region bounded by $y=\sin x$ and $y=\cos x$ from $x=0$ to $x=\frac{\pi}{2}$.

$$
x^{3}-6 x^{2}+8 x=x^{2}-4 x
$$

3. Find the area of the region bounded by $y=x^{3}-6 x^{2}+8 x$ and $y=x^{2}-4 x$.

$$
x^{3}-7 x^{2}+12 x=0
$$

$$
\begin{aligned}
& y=x^{3}-6 x^{2}+8 x \\
& 0=x\left(x^{2}-6 x+8\right) \\
& 0=x(x-4)(x-2) \\
& x=0,4,2 \\
& \xrightarrow[0]{-\frac{1}{2}+\frac{1}{2}+}{ }_{4}^{y} \\
& y=x^{2}-4 x \\
& p=x(x-4) \\
& x=0,4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. Find the area of the region enclosed by } y^{2}=4 x \text { and } y=2 x-4 \text {. }
\end{aligned}
$$

