2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

Do Now:

		7		\neg r	
x	2	3	5	8	13
f(x)	1	4	-2	3	6

- 5. Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \le x \le 13$. $f'(4) \approx \frac{f'(5)-f(3)}{5-3} = -\frac{2-4}{3} = -3$
 - (a) Estimate f'(4). Show the work that leads to your answer.
 - (b) Evaluate $\int_{2}^{13} (3 5f'(x)) dx$. Show the work that leads to your answer.
 - (c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) dx$. (1)(1) + (2)(4) + (3)(-2) + (5)(3) = 18Show the work that leads to your answer.
 - (d) Suppose f'(5) = 3 and f''(x) < 0 for all x in the closed interval $5 \le x \le 8$. Use the line tangent to the graph of f at x = 5 to show that $f(7) \le 4$. Use the secant line for the graph of f on $5 \le x \le 8$ to show that $f(7) \ge \frac{4}{3}$.

Date:

Ms. Loughran

Remember:

 $\begin{array}{c|c} y \\ y \\ y = f(x) \\ a \\ b \\ \end{array}$

If a function f is continuous on [a,b] and if $f(x) \ge 0$ for all x in [a,b] then the area under the curve y = f(x) over the interval [a,b] is defined by:

$$Area = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

Which can be rewritten as : $Area = \int_{a}^{b} f(x) dx$

What if the region is not bounded by the *x*-axis? What if the area is between 2 curves?

Vertical Strip: (everything in terms of x)
right most

$$x_{-value}$$

 T
 b top wrve
 b top wrve
 $f(x)$ $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$
 $f(x)$

1. Find the area of the region bounded by y = x + 6 and $y = x^2$.

