KEV Answers to today's classwork:
b)

$$
\rightarrow y=2
$$

$$
\begin{aligned}
& V=\pi \int_{0}^{4}(2-\sqrt{x})^{2} d x \\
& V=\pi \int_{0}^{4}(4-4 \sqrt{x}+x) d x
\end{aligned}
$$

$$
V=\pi \cdot 4 x-\frac{8 x^{3 / 2}}{3}+\left.\frac{x^{2}}{2}\right|^{4}
$$

$$
\pi\left(\left(4(4)-\frac{8(4)^{3 / 2}}{3}+\frac{4^{2}}{2}\right)^{0}-0\right)=\pi\left(16-\frac{14}{3}+8\right)
$$

$$
=\pi\left(24-\frac{60}{3}\right)=\left(\frac{8 \pi}{3}\right)
$$

$$
\begin{aligned}
& r=\sqrt{x}-0=\sqrt{x} \\
& \left.\pi\left(4(4)-\frac{4^{2}}{2}-0\right)=8 \pi\right)
\end{aligned}
$$

(d)

$$
R=4-0=4
$$

$$
r=4-y^{2}=
$$

$$
\begin{aligned}
& V=\pi \int_{0}^{2}\left[(4)^{2}-\left(4 y^{2}\right)^{2}\right] d y \\
& V=\pi \int_{0}^{2}\left(16-\left(16-8 y^{2}+y^{4}\right) d y\right. \\
& =\pi \int_{0}^{2}\left(8 y^{2}-y^{4}\right) d y \\
& \pi \cdot \frac{8}{3} y^{3}-y^{5} /\left.5\right|_{0} ^{2} \\
& \pi\left(\frac{8}{3}(2)^{3}-(2)^{2} / 5\right)=\pi\left(\frac{64}{3}-32 / 5\right) \\
& \\
& \left.=\frac{224 \pi}{15}\right)
\end{aligned}
$$

(e)

$$
r=\sqrt{x}-(-1)=\sqrt{x}+1 \quad V=\pi \int_{0}^{4}(8-x-2 \sqrt{x}) d x
$$

$$
-\int 2 \sqrt{x}
$$

$$
-2 \int x^{\frac{1}{2}}
$$

$$
V=\left.\pi \cdot\left(8 x-\frac{x^{2}}{2}-\frac{4 x^{3 / 2}}{3}\right)\right|_{0} ^{4}
$$

$$
\frac{-2 \cdot \frac{2}{3} x^{3 / 2}}{-\frac{4}{3} x^{3 / 2}}
$$

$$
\left.V=\pi(8 / 4)-\frac{(4)^{2}}{2}-\frac{4(4)^{3 / 2}}{3}\right)^{0}
$$

$$
V=\pi(32-8-32 / 3)=\pi\left(24-\frac{32}{3}\right)
$$

$$
=\left(\frac{40 \pi}{3}\right)
$$

$$
\begin{aligned}
& R=2-(-1)=3
\end{aligned}
$$

Homework 03-11

$$
\begin{gathered}
R=\sqrt{25-x^{2}}-0=\sqrt{25-x^{2}} \\
-7=3=3=3 \\
=\sqrt{25-x^{2}} r=3-0 \\
V=\pi \int_{-4}^{4}\left(\left(\sqrt{25-x^{2}}\right)^{2}-(3)^{2}\right) d x \\
\left.V=\pi \int_{-4}^{4}\left(25-x^{2}-9\right) d x=\pi \int_{-4}^{4} 16-x^{2}=\pi \cdot\left[16 x-x^{3} / 3\right]\right] \\
\pi[16(4)-43 / 3-(16(-4)-(-4) / 3) / 3] \\
\pi(64-64 / 3+64-64 / 3) \\
\pi(128-128 / 3)=(256 \pi / 3)
\end{gathered}
$$

$$
\rightarrow x^{2}=y \quad 4 x=y
$$

(13) $x=\sqrt{-y} \quad x=y / 4$

$$
\begin{aligned}
& R=4 x-0=4 x \\
& r=x^{2}-0=x^{2} \\
& V=\pi \int_{0}^{4}\left((4 x)^{2}-\left(x^{2}\right)^{2}\right) d x \\
& V=\pi \int_{0}^{4}\left(16 x^{2}-x^{4}\right) d x=\pi \cdot\left[\frac{76 x^{3}}{3}-\left.\frac{x^{5}}{5}\right|_{0} ^{4}\right] \\
& y^{2}-16 y=0 \\
& \begin{array}{l}
y(y-16)=0 \\
y=16
\end{array} \\
& y=0 \quad y=16 \\
& x=0 \quad x=4 \\
& 16 y=y^{2} \\
& \begin{array}{r}
=\pi\left[\begin{array}{c}
\frac{16(4))^{3}}{3}-\frac{(4) 5}{5}-0 \\
\pi\left[\frac{5126}{15}-\frac{5072}{15}\right]
\end{array}\right]=\left[\begin{array}{l}
\left.\frac{1024}{3}-\frac{1024}{5}\right] \\
\frac{2048 \pi}{15}
\end{array}\right]
\end{array}
\end{aligned}
$$

(12)

$$
\begin{aligned}
& \left\{i^{y} \hat{=}=e^{-2 x}\right. \\
& -\left.\frac{1}{4} e^{-4 x}\right|_{0} ^{1}=\pi\left[-\frac{1}{4} e^{-4}-\left(-\frac{1}{4} 0^{0}\right)\right] \int_{0}^{1}=\left(-\frac{1}{4 e^{4}}+\frac{1}{4}\right) \pi
\end{aligned}
$$

(21) $x=y^{2}, x=y+z$

B. pts.

$$
\begin{aligned}
& y^{2}=y+2 \\
& y^{2}-y-2=0 \\
& (y-2)(y+1)=0 \\
& y=2 \quad \mid y=-1 \\
& x=4 \quad x=1
\end{aligned}
$$

$$
\begin{aligned}
& V=\pi \int_{-1}^{2}\left[(y+2)^{2}-\left(y^{2}\right)^{2}\right] d y \\
& =\pi \int_{-1}^{2}\left[y^{2}+4 y+4-y^{4}\right] d y \\
& V=\pi\left[\frac{4}{3}+2 y^{2}+4 y-\left.\frac{y^{5}}{5}\right|_{-1} ^{2}\right] \\
& V=\pi\left((2)^{3} / 3+2(2)^{2}+4(2)-\frac{\left.(2)^{5}-\left(\frac{(-1)^{3}}{3}+2(-1)^{2}+4(-1)-\frac{(-1)^{5}}{5}\right)\right)}{V=\pi(8 / 3+8+8-32 / 5-(-1 / 3+2-4+1 / 5))}\right. \\
& V=\pi\left(\frac{8 / 3+16-32 / 5+1 / 3-2+4-1 / 5)}{V=\pi(18+3-33 / 5)}\right. \\
& V=\pi(21-33 / 5)=\pi\left(\frac{105}{5}-\frac{33}{5}\right) \\
& =\frac{72 \pi}{5}
\end{aligned}
$$

