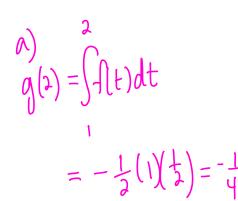
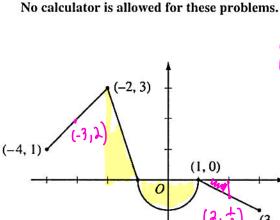
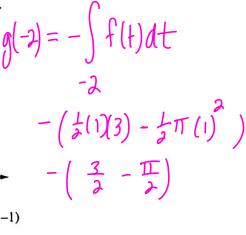
Do Now:

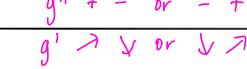

2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

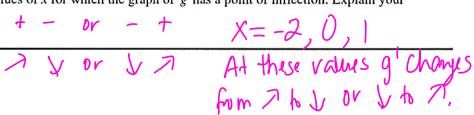

CALCULUS AB


SECTION II, Part B

Time-60 minutes

Number of problems-4



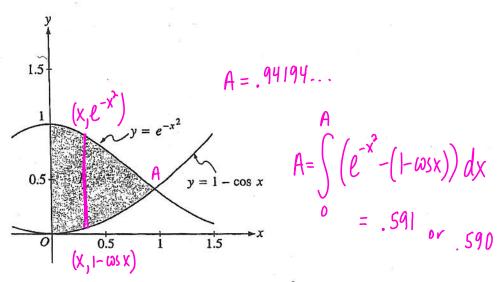


Graph of f

- 3. Let f be the continuous function defined on [-4, 3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_{1}^{x} f(t) dt$.
 - (a) Find the values of g(2) and g(-2).
- (b) For each of g'(-3) and g''(-3), find the value or state that it does not exist. 0'(-3) = f(-3) = 2(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
- (d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

q'(x) = 0 of $x = \frac{1}{4}$

at X=-1 there is a rel max ble g' changessign from + to - at x=-1 X= | Hun 15 nutter b/c y/ Wen4 change Sign
© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

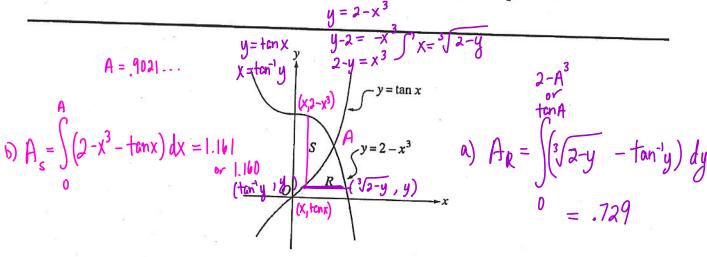

2000 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB SECTION II, Part A

Time-45 minutes

Number of problems-3

A graphing calculator is required for some problems or parts of problems.

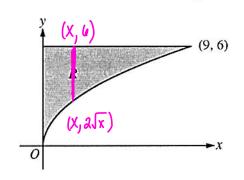

- 1. Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 \cos x$, and the y-axis, as shown in the figure above.
 - (a) Find the area of the region R.
 - (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

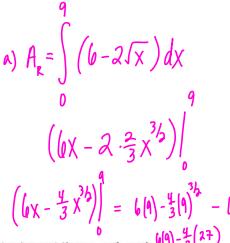
2001 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB SECTION II, Part A Time—45 minutes

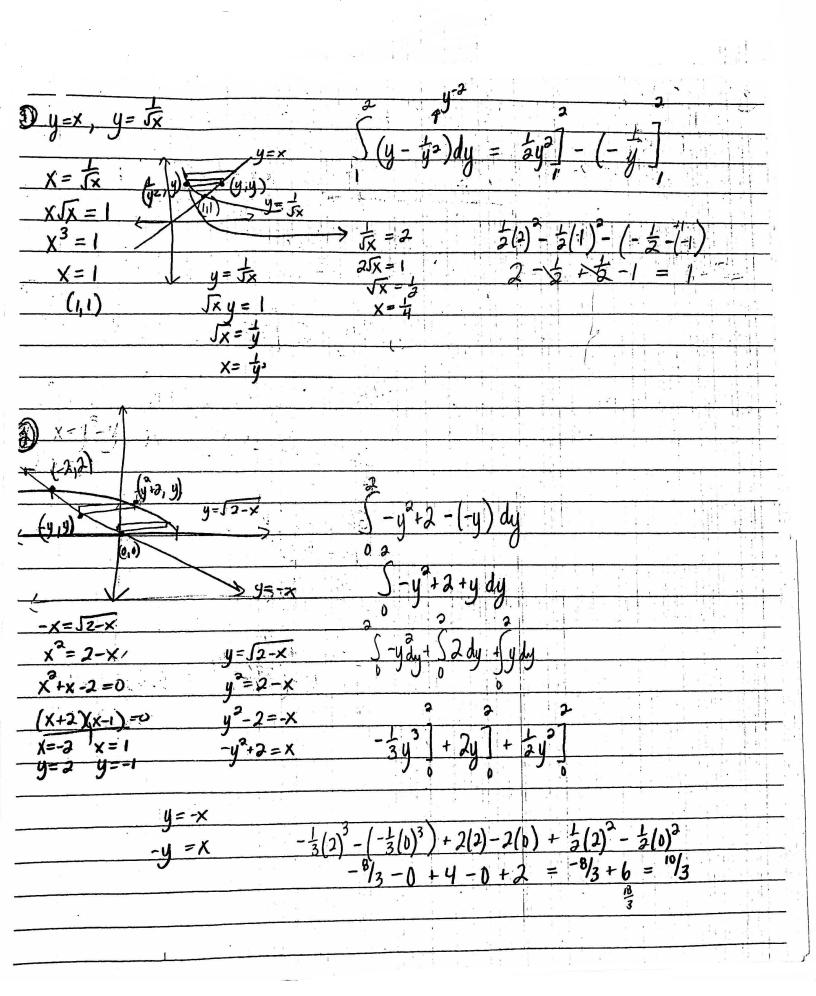
Number of problems—3

A graphing calculator is required for some problems or parts of problems.


- 1. Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y = 2 x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 x^3$ and $y = \tan x$.
 - (a) Find the area of R.
 - (b) Find the area of S.
 - (c) Find the volume of the solid generated when S is revolved about the x-axis.


2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB SECTION II, Part B


Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

- 4. Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y-axis, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 7.
 - (c) Region R is the base of a solid. For each y, where $0 \le y \le 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

601 1001	2 3 / K
(3) y=	A 3 (6 2) 1 2 (6 2) 1
(3) Y-E) (7-x) (x-x) (x-x) dx
(x'x)	75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$9x-3x = 2 \cdot kx - 3x$
	$X = K$ $\frac{-3}{27}$ $\frac{19}{27}$
	X = JR $9(3) - 3(3) - (9(3) - 3(-3))$
	27-9+27-9
	$-K^{3/3} + \frac{1}{3}k^{3/2}$
7	$36 = 2 \cdot KJR - \frac{1}{3}(JR) - (K(-JE) - \frac{1}{3}(-JE)^{3})$
	36- 2·(K32-3K3/2+K32-3K2)
	$36 = 2(2k^{2} - \frac{7}{3}k^{2})$
	$36 = 2(3k^2)$
1	3.18=4K34.34
	54 = k3/2
	$\frac{2^{2}}{3} = K_{2}^{2/2}$
	$\frac{27}{3} = \frac{1}{4} \frac{27}{3} \approx 5.669644$ $K = (27/2)^{1/3} \approx 5.669644$ 5.670
	5.670
· · · · · · · · · · · · · · · · · · ·	