2019 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

Do Now:

CALCULUS AB

SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of questions- 2

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

1. Fish enter a lake at a rate modeled by the function E given by $E(t)=20+15 \sin \left(\frac{\pi t}{6}\right)$. Fish leave the lake at a rate modeled by the function L given by $L(t)=4+2^{0.1 t^{2}}$. Both $E(t)$ and $L(t)$ are measured in fish per hour, and t is measured in hours since midnight $(t=0)$.
(a) How many fish enter the lake over the 5 -hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$? Give your answer to the nearest whole number.

$$
\int_{0}^{5} E(t) d t=153.457 \ldots
$$

(b) What is the average number of fish that leave the lake per hour over the 5 -hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$?

$$
\frac{1}{5-0} \int_{0}^{5} L(t) d t=6.059 \ldots \quad 6.059
$$

(c) At what time t, for $0 \leq t \leq 8$, is the greatest number of fish in the lake? Justify your answer.
(d) Is the rate of change in the number of fish in the lake increasing or decreasing at 5 A.M. $(t=5)$? Explain your reasoning.
(d) $E^{\prime}(5)-L^{\prime}(5)=-10.7227 \ldots$ Since $E^{\prime}(s)-L^{\prime}(s)<0$, the
(d) $E^{\prime}(5)-L^{\prime}(5)=-10.7227 \ldots$ rate of change in the number of fish in the lake at sam is decreasing.
(c) $E(t)-L(t)=0$

Since $E(t)-L(t)>0$ prior $h t=6.203$
and $E(t)-L(t)<0$ after $t=6.203$
Then at $t=6.203$ we have a maximum
\qquad
AP Calc: Writing Limits of Riemann Sums as Definite Integrals

Recall:
If a function f is continuous on $[a, b]$ and if $f(x) \geq 0$ for all x in $[a, b]$ then the area under the curve $y=f(x)$ over the interval $[a, b]$ is defined by: hight

$$
\text { Area }=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}\right) \triangle x \rightarrow \text { base }
$$

Which can be rewritten as :

$$
\begin{aligned}
& =\Delta x \\
& f(a+\Delta x k)
\end{aligned}
$$

1. Given $\left.\lim _{n \rightarrow \infty} \frac{f(a+\Delta x k)}{\sum_{k=1}^{n}\left(\frac{3\left(\frac{2 k}{n}\right)}{-}\right)+1}\right) \rightarrow \Delta x$

$$
\begin{aligned}
& f(x)=3 x+1 \\
& 3+\frac{2 k}{\sigma}=a+\Delta x k \\
& a=3
\end{aligned}
$$

$$
\Delta x=\frac{2}{n}
$$

$$
\frac{b-a}{n}=\frac{2}{A}
$$

$$
\int_{3}^{5}(3 x+1) d x
$$

$$
b-3=2
$$

$$
\begin{array}{r}
b-3=\alpha \\
b=5
\end{array}
$$

2. Given $\left.\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{5 k}{n}\right)\right)^{2 \Delta x k}+2\right)\left(\frac{5}{n}\right)$ write as an equivalent definite integral.

$$
\begin{aligned}
& f(x)=x^{2}+2= \\
& a+\Delta x k=\frac{5 k}{n} \\
& a=0 \\
& \int_{0}^{5} x^{2}+2 d x
\end{aligned}
$$

$$
\Delta x=\frac{5}{n}
$$

$$
\begin{gathered}
\frac{5}{n}=\frac{b-a}{n} \\
5=b-a \\
5=b
\end{gathered}
$$

3. Given $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\binom{a+(4)}{n}^{2}\left(\frac{4}{n}\right)\right.$ write as an equivalent definite integral.

$$
\begin{aligned}
a+(\Delta x x)= & 3+\left(\frac{4 k}{n}\right) \\
a & =3 \\
& \int_{3}^{7} x^{2} d x
\end{aligned}
$$

$$
f(x)=x^{2}
$$

$$
\frac{4}{K}=\frac{b-3}{K}
$$

$$
7=b
$$

Now what if we have to go in the reverse?
4. Given $\int_{0}^{3} e^{x} d x$, write it as an equivalent limit of a Riemann sum

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} e^{\frac{3 k}{n}} \frac{3}{n}
$$

$$
\begin{gathered}
a=0 \quad b=3 \quad \Delta x=\frac{b-a}{n} \\
\Delta x=\frac{3-0}{n}=\frac{3}{n} \\
f(x)=e^{x} \\
\\
f(a+\Delta x k) \\
\\
f\left(0+\frac{3}{n} k\right)=f\left(\frac{3}{n} k\right)=e^{\frac{3}{n} k}
\end{gathered}
$$

Homework 03-18
(2002 Formb
(a) 3.215 or 3.214
(2003)

1a) .443 or .442
(a) $\begin{aligned} & f^{\prime}(x)=8 x-3 x^{2} \\ & \left.f^{2}(3)=8(3)-3()^{2}\right)=-3 \\ & y=4(3)^{2}-3(3)^{3}=9 \\ & y-9=3(x)\end{aligned}$
(a) $f^{\prime}(3)=8(3)-3(3)^{2}=-3 \quad y-9=-3(x-3)$
b) 7.917 or 7.916
$\{2004$
2004 Form B
2a) 1.133
(a) 18

2003 AP ® ${ }^{\text {® }}$ CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB
SECTION II, Part A
Time- 45 minutes
Number of problems -3

A graphing calculator is required for some problems or parts of problems.

1. Let f be the function given by $f(x)=4 x^{2}-x^{3}$. and let ℓ be the line $y=18-3 x$. where ℓ is tangent to the $6=\chi$ graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ, and the x-axis, as shown above.
(a) Show that ℓ is tangent to the graph of $y=f(x)$ at the point $x=3$.
(b) Find the area of S.
(c) Find the volume of the solid generated when R is revolved about the x-axis.
or

$$
A_{s}=\int_{3}^{4}\left(18-3 x-\left(4 x^{2}-x^{3}\right)\right) d x+\int_{4}^{6}(18-3 x-0) d x
$$

