Definite Integral as the Limit of a Riemann Sum
Facotit $\cdot 1 x$

Name:
AP Calculus: Volumes of Solids of Revolution

Date: \qquad
Ms. Loughran

bothmure
Volume of each disk: $\pi r^{2} h \longrightarrow$ as $\Delta x \rightarrow 0 \rightarrow d x$

$$
\begin{gathered}
r=f(x)-0 \\
r=f(x)
\end{gathered}
$$

$$
r=\text { top curve - bottom curve }
$$

Volume of Solid:

Volume of Solid:

$$
\begin{aligned}
& \lim _{h \rightarrow \infty} \sum_{k=1}^{n} \pi f\left(x_{k}\right) \Delta x \\
& \int_{a}^{b} \pi(f(x))^{2} d x=\pi \int_{a}^{b}(f(x))^{2} d x
\end{aligned}
$$

When you integrate area you get volume, just like when we integrated height we got area. The representative rectangle in the disk method is always perpendicular to the axis of revolution.

1. Find the volume generated when $y=x^{2}$ from $x=0$ to $x=1$ is revolved about the x-axis.

2. Find the volume of the solid that results from revolving the region bounded between $y=x$ and the x-axis from $x=0$ to $x=1$ around the x-axis.

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& y^{2}=9-x^{2}
\end{aligned}
$$

3. Find the volume of the solid that results when the region bounded by $y=\sqrt{9-x^{2}}$ and the x-axis is revolved around the the x-axis.

Do Now:

1. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines $y=2$ and $x=0$ about the line $y=2$.

Name:
AP Calc - Definite Integrals, Limits of Riemann Sums, and SNACK STEALING?!

A snack stealing scandal has rocked RHS!

The math department is known for their love of food, but this time someone has gone too far! You have been asked to help solve the mystery of the missing snacks!

Answer the 6 multiple choice questions posted around the room and you will found out:
who: Carman
whes: Period 1
wat: Reese's PB Cups and Hot Chocolate wтни Compass
weree Testing Center

WHO?

Which of the limits is equivalent to the following definite integral?

$$
\begin{array}{ll}
\left.\int_{0}^{\pi} \text { (-os. } .\right) d x & \Delta x=\frac{\pi-0}{n}=\frac{\pi}{n} \\
& f(a+\Delta x k) \\
& f\left(0+\frac{\pi}{n} k\right)=\cos \left(\frac{\pi}{n} k\right) \\
\text { (4) } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{i}{n}\right) \cdot \frac{\pi}{n} & \text { STACK }
\end{array}
$$

$$
\frac{\text { (-) } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{\pi i}{n}\right) \cdot \frac{i}{n}}{\text { (C) } \lim _{n \rightarrow \infty}^{n} \sum_{i=1}^{n} \cos \left(\frac{\pi i}{n}\right) \cdot \frac{\pi}{n}} \text { LE } \text { CARMAN }
$$

(1) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{i}{n}\right) \cdot \frac{i}{n}$

LOUGHRAN

WHEN?

Which of the limits is equivalent to the following definite integral?

$$
\begin{array}{ll}
\int_{-2}^{3}(x+1) d x & \begin{array}{c}
\Delta x=\frac{3-(-2)}{n}=\frac{5}{n} \\
f(a+\Delta x k)
\end{array} \\
f\left(-2+\frac{5}{n} k\right)=-2+\frac{5}{n} k+1=-1+\frac{5}{n} k
\end{array}
$$

(3) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{5 i-1}{n}\right) \cdot \frac{5}{n}$ PERIOD 3
© $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{5 i+1}{n}+1\right) \cdot \frac{5}{n}$ PERIOD 5
(©) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{5 i}{n}+1\right) \cdot \frac{5}{n} \quad$ PERIOD 7

WHAT? (PART 1)

Which of the definite integrals is equivalent to the following limit?

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \ln \binom{a+\Delta x i}{\left(2+\frac{5 i}{n}\right) \cdot\left(\frac{5}{n}\right.} \begin{aligned}
& \frac{5}{n}=\frac{b-2}{n} \\
& 7=b
\end{aligned}
$$

(4) $\int_{0}^{i} \ln x d x$ ICE CREAM
© \int_{2}^{3} maxde CUPCAKES

- REESES PB CUPS
© ($\int_{0}^{3} \ln x d x$ PEPPERMINT PATTIES

WHAT? (PART 2)

Which of the definite integrals is equivalent to the following limit?

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{\pi}{2}+\frac{\pi i}{2 n}\right) \cdot\left(\frac{\pi}{2 n}\right)^{\frac{\pi}{2 n}}= & \frac{b-\frac{\pi}{2}(2)}{n}(2) \\
a=\frac{\pi}{2} & \frac{\pi}{2 n}
\end{array}=\frac{2\left(b-\frac{\pi}{2}\right)}{2 n} \\
\pi=2 b-\pi
\end{array}\right)
$$

© $\int_{0}^{12}{ }^{n} \cos x d x$ PEACH SELTZER
(1) $\int_{\pi / 2}^{\infty} \cos \pi d x$ HOT CHOCOLATE

WITH?

WHERE?

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& f(y+s \nu)=\sqrt{4+\frac{s i}{n}}
\end{aligned}
$$

Which of the definite integrals is equivalent to the following limit?

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{\Delta f(a+\Delta x i)}{4+\frac{5 i}{n}} \cdot\left(\frac{5}{n}\right) \Delta x} \begin{array}{ll}
a+\Delta x i
\end{array} \quad \begin{aligned}
& a=4 \\
&
\end{aligned} \quad \frac{5}{n}=\frac{b-4}{n} \quad \begin{array}{r}
5=b-4 \\
b=9
\end{array}
$$

(4) $\int_{0}^{4} \sqrt{4+x} d x$ LIBRARY $\quad f(x)=\sqrt{4+x}$
(8) $\int_{0}^{3} \sqrt{x} d x$ MAIN OFFICE
(0) $\int_{i}^{9} \sqrt{4+x} d x$ SCIENCE STUDY CENTER

2018 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

$$
B=166.579
$$

1. People enter a line for an escalator at a rate modeled by the function r given by

$$
r(t)= \begin{cases}44\left(\frac{t}{100}\right)^{3}\left(1-\frac{t}{300}\right)^{7} & \text { for } 0 \leq t \leq 300 \\ 0 & \text { for } t>300\end{cases}
$$

$$
\begin{array}{l|l}
t & N(t) \\
\hline 0 & 20 \\
A & 3.813 \\
B & 158.070 \\
300 & 80
\end{array}
$$

where $r(t)$ is measured in people per second and t is measured in seconds. As people get on the escalator, where $r(t)$ is measured in people per second and t is measured in seconds. As people get on the escalator,
they exit the line at a constant rate of 0.7 person per second. There are 20 people in line at time $t=0 . \quad t=33.01329 \ldots$.
(a) How many people enter the line for the escalator during the time interval $0 \leq t \leq 300$?
(b) During the time interval $0 \leq t \leq 300$, there are always people in line for the escalator. How many people are in line at time $t=300$?
(c) For $t>300$, what is the first time t that there are no people in line for the escalator?
(d) For $0 \leq t \leq 300$, at what time t is the number of people in line a minimum? To the nearest whole number, find the number of people in line at this time. Justify your answer.

2018 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS
2. A particle moves along the x-axis with velocity given by $v(t)=\frac{10 \sin \left(0.4 t^{2}\right)}{t^{2}-t+3}$ for time $0 \leq t \leq 3.5$.

The particle is at position $x=-5$ at time $t=0$.
(a) Find the acceleration of the particle at time $t=3$.
(b) Find the position of the particle at time $t=3$.
(c) Evaluate $\int_{0}^{3.5} v(t) d t$, and evaluate $\int_{0}^{3.5}|v(t)| d t$. Interpret the meaning of each integral in the context of the problem.
(d) A second particle moves along the x-axis with position given by $x_{2}(t)=t^{2}-t$ for $0 \leq t \leq 3.5$. At what time t are the two particles moving with the same velocity?

2018 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB
 SECTION II, Part B
 Time-1 hour
 Number of questions-4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \leq x<3$, and $g(x)=2(x-4)^{2}$ for $3 \leq x \leq 6$.
(a) If $f(1)=3$, what is the value of $f(-5)\} 2\left(x^{2}-8 x+16\right) d x$
(b) Evaluate $\int_{1}^{6} g(x) d x=\int_{1}^{3} g(x) d x+\int_{3}^{6} 2(x-4)^{2} d x=4+\left(\left.2\left(\frac{x^{3}}{3}-4 x^{2}+10 x\right)\right|_{3} ^{2}=10\right.$
(c) For $-5<x<6$, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
$f^{\prime}+7 \quad(0,1) \cup(4,6)$
(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.
$\frac{f^{\prime \prime}+t_{0}-\text { or }-t_{0}+\quad x=4}{f^{\prime} \rho \downarrow \text { or } \searrow \lambda}$

2018 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

t (years)	2	3	5	7	10
$H(t)$ (meters)	1.5	2	6	11	15

4. The height of a tree at time t is given by a twice-differentiable function H, where $H(t)$ is measured in meters and t is measured in years. Selected values of $H(t)$ are given in the table above.
(a) Use the data in the table to estimate $H^{\prime}(6)$. Using correct units, interpret the meaning of $H^{\prime}(6)$ in the context of the problem. $\quad H(7)-H(5)=\frac{11-6}{7-5}=\frac{5}{2} \mathrm{~m} / \mathrm{yr} \quad \mathrm{im} \mathrm{m} / \mathrm{m}$ ad $t=6 \mathrm{grs}$ of cha te in high of er
(b) Explain why there must be at least one time t, for $2<t<10$, such that $H^{\prime}(t)=2$. must be at leastone C By MVT since the average rate of chat of $H^{\circ \prime \prime}(3,5)$ is 2 there must be at s) here $H^{\prime \prime}(c)=2$
(c) Use a trapezoidal sum with the four subintervals indicated by the data in the table to approximate the average height of the tree over the time interval $2 \leq t \leq 10$.
(d) The height of the tree, in meters, can also be modeled by the function G, given by $G(x)=\frac{100 x}{1+x}$, where x is the diameter of the base of the tree, in meters. When the tree is 50 meters tall, the diameter of the base of the tree is increasing at a rate of 0.03 meter per year. According to this model, what is the rate of change of the height of the tree with respect to time, in meters per year, at the time when the tree is 50 meters tall?
c) anurgitight of inc=

$$
\begin{aligned}
& 50=\frac{100 x}{1+x} \quad d \frac{f(x)}{}=\frac{(1+x)\left(100 \frac{d x}{d t}\right)-100 x\left(\frac{d x}{d t}\right.}{(1+x)^{2}} \\
& 50+50 x=100 \\
& 50=58 x \\
& 1=x
\end{aligned}
$$

Visit the College Board on the Web: www.collegeboard.org.

