Name:
AP Calculus AB Volumes of Solids of Revolution

Date:
Ms. Loughran

Do Now:

Find the volume of the solid formed when the region bounded by $y=x^{2}$, the x-axis, and $x=1$ is
revolved about the line $x=1$.

$$
V=\pi \int_{0}^{1}(1-\sqrt{y})^{2} d y
$$

$$
r=1-\sqrt{y}
$$

$$
\begin{aligned}
& \pi \int_{0}^{1}(1-2 \sqrt{y}+y) d y \\
& \pi\left[y-\frac{4}{3} y^{3 / 2}+\left.\frac{y^{2}}{2}\right|_{0} ^{1}\right] \\
& \pi\left[1-\frac{y}{3}+\frac{1}{2}\right]
\end{aligned}
$$

$A_{\text {shadedregon }}=\pi R^{2}-\pi r^{2}$ $=\pi\left(R^{2}-r^{2}\right)$ $R^{2}-r^{2} \neq(R-r)^{2}$
$R=f(x)-$

$$
V=\pi \int^{V}\left((f(x))^{\hat{2}}-(g(x))^{2}\right) d x
$$

$x^{2}=y$
$x=\sqrt{y}$, the x-axis and $x=1$ is revolved about the y-axis. Find the volume.

2. Find the volume of the solid that results when the region bounded by $y=x$ and $y=x^{2}$ is revolved about the x-axis.

$$
\begin{aligned}
& \text { Re } x \text {-axis. } \\
& \left.V=\pi \int_{0}^{1} x^{2}-\left(x^{2}\right)^{2} d x=\pi\left[\frac{\pi}{3}-\frac{x}{5} \frac{x^{\prime}}{5}\right]\right] \\
& \pi\left[\frac{1}{3}-\frac{1}{5}-0\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(-x^{2}+2 x+1\right)^{2}-1 \\
& x^{4}-2 x^{3}-x^{2}-2 x^{3}+4 x^{2}+2 x-x^{2}+2 x+x-x
\end{aligned}
$$

$\rightarrow y$-nt: $(0,1)$
3. $x^{4}-4 x^{3}+2 x^{2}+4 x$ generated if this area is rotated about the x-axis.

$$
V=\pi \int_{0}^{2}\left(-x^{2}+2 x+1\right)^{2}-1^{2} d x=\pi \int_{0}^{2}\left(x^{4}-4 x^{3}+2 x^{2}+4 x\right) d x
$$ 4. The region in the first quadrant enclosed by the y-axis and the graphs of

$y=\cos x$ and $y=\sin x$ is revolved around the x-axis to form a solid. Find its volume. $\pi\left[\frac{32}{5}-16+\frac{16}{3}+8\right]$

$$
\begin{array}{r}
V=\pi \int_{0}^{\frac{\pi}{4}}\left(\cos ^{2} x-\sin ^{2} x\right) d x=\pi \int_{0}^{\frac{\pi}{4}} \cos 2 x d x=\pi\left[\left.\frac{1}{2} \sin 2 x\right|_{0} ^{\frac{\pi}{4}}\right]_{0}^{2} x-\sin ^{2} x=\cos 2 x *
\end{array}=\pi\left[\frac{1}{2} \sin \frac{\pi}{2}-\frac{1}{2} \sin 0\right] \begin{gathered}
\pi \\
\pi\left[\frac{1}{2}(1)-\frac{1}{2}(0)\right]=\frac{\pi}{2}
\end{gathered}
$$

