Name:
AP Calculus AB: Volumes of Known Cross Sections

Date:
Ms. Loughran

Do Now:

1. $\left.\operatorname{Let}\left(\int_{0}^{x} f(t) d t\right)^{\prime}=(x \sin \pi x)\right)^{\prime}$ find $f(3)$.
(3) -3π
(B) -1
(C) 0
(D) 1
(E) 3π
$f(x)=x \cos (\pi x) \pi+\sin \pi x$

$$
f(3)=3 \cos (3 \pi) \cdot \pi+\sin 3 \pi=3(-1) \pi+0=-3 \pi
$$

2. Find the volume of the region bounded by $y=4 x-x^{2}$ and the x-axis when revolved about the line $y=6$.

A cross section is a slice-not necessarily a disk or a washer.

General solution:

$$
V=\int(\text { Aras of cross sechon } \perp \text { to the base of the solid) } d x \text { or } d y
$$

This formula can be used for solids not obtained by revolution about a line. The only requirement is that each cross section perpendicular to the base of the solid must have a known area.

$$
\begin{aligned}
& y^{2}+x^{2}=9 \quad \text { Girds } \\
& y^{2}=9-x^{2} \times \text { semicircle }
\end{aligned}
$$

1. The base of solid S is the region enclosed by the graph of $y=\sqrt{9-x^{2}}$ and the x axis. If the cross sections of S perpendicular to the x-axis are squares, find the volume of S.

$$
x
$$

$$
\begin{aligned}
& A_{\text {square }}=s^{2} \\
& \text { side of square: } \sqrt{9-x^{2}}-0=\sqrt{9-x^{2}} \\
& V=\int_{-3}^{3}\left(\sqrt{9-x^{2}}\right)^{2} d x=9 x-\left.\frac{x^{3}}{3}\right|^{3} \\
& =27-9-\left(-27^{-18}+9\right)^{3}=18+18=36
\end{aligned}
$$

2. The base of a solid is the region in the first quadrant which is bounded by the line $4 x+5 y=20$ and the coordinate axes. What is the volume of the solid if every cross section perpendicular to the x-axis is a semicircle?

$$
\begin{aligned}
4 x+5 y & =20 \\
5 y & =20-4 x \\
y & =4-\frac{4}{5} x
\end{aligned}
$$

3. Find the volume of the solid whose base is bounded by the circle $x^{2}+y^{2}=4$ with the indicated cross sections taken perpendicular to the x-axis:
(a) squares
(b) equilateral triangles
(c) isosceles right triangles with hypotenuse in bounded region
a)

$$
\begin{aligned}
& y^{2}=4-x^{2} \\
& y= \pm \sqrt{4-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { side } & =\sqrt{4-x^{2}}-\left(-\sqrt{4-x^{2}}\right) \\
& =2 \sqrt{4-x^{2}}
\end{aligned}
$$

to be continue ed ...

Let's find a general formula for finding the area of an equilateral triangle.

Homework 03-27

$$
\rightarrow y=2
$$

$$
\begin{aligned}
& V=\pi \int_{0}^{4}(2-\sqrt{x})^{2} d x \\
& V=\pi \int_{0}^{4}(4-4 \sqrt{x}+x) d x
\end{aligned}
$$

$$
V=\pi \cdot 4 x-\frac{8 x^{3 / 2}}{3}+\left.\frac{x^{2}}{2}\right|^{4}
$$

$$
\pi\left(\left(4(4)-\frac{8(4)^{3 / 2}}{3}+\frac{4^{2}}{2}\right)^{0}-0\right)=\pi\left(16-\frac{4}{3}+8\right)
$$

$$
=\pi\left(24-\frac{60}{3}\right)=\left(\frac{8 \pi}{3}\right)
$$

$$
\begin{aligned}
& \text { b) } \\
& r=y^{2} \\
& \pi(2) / 5)=33 \pi / 5
\end{aligned}
$$

$$
\begin{aligned}
& \left.r=\sqrt{x}-0-\sqrt{x} \quad \pi\left(4(4)-\frac{4^{2}}{2}-0\right)=4 \pi\right)
\end{aligned}
$$

(d)

$$
\begin{array}{ll}
R=4-0=4 \\
r=4-y^{2} & =\pi \int_{0}^{0}\left(8 y^{2}-y^{4}\right) d y
\end{array}
$$

$$
\begin{aligned}
& V=\pi \int_{0}^{2}\left((4)^{2}-\left(4 y^{2}\right)^{2}\right] d y \\
& V=\pi \int_{0}^{2}\left(16-\left(16-8 y^{2}+y^{4}\right) d y\right. \\
& =\pi \int_{0}^{2}\left(8 y^{2}-y^{4}\right) d y \\
& \pi \cdot \frac{8}{3} y^{3}-y^{5} /\left.5\right|_{0} ^{2} \\
& \pi\left(\frac{7}{3}(2)^{3}-(2)^{2} / 5\right)=\pi\left(\frac{645}{3}-3 / 5\right) \\
& \\
& =\left(\frac{224 \pi}{15}\right)
\end{aligned}
$$

(e)

$$
V=\pi \int_{0}^{4}\left[(3)^{2}-(\sqrt{x}+1)^{2}\right] d x
$$

$$
R=2-(-1)=3
$$

$$
V=\pi \int_{0}^{4} 9-(x+2 \sqrt{x}+1) d x
$$

$$
\begin{aligned}
& k=2-(-1)=3 \\
& r=\sqrt{x}-(-1)=\sqrt{x}+1 \quad V=\pi \int_{0}^{4}(8-x-2 \sqrt{x}) d x
\end{aligned}
$$

$$
r=\sqrt{x}-(-1)=\sqrt{x}+1
$$

$$
-\int 2 \sqrt{x}
$$

$$
-2 \int x^{\frac{1}{2}}
$$

$$
-2 \cdot \frac{2}{3} x^{3 / 2}
$$

$$
-\frac{4}{3} x^{3 / 2}
$$

$$
\begin{aligned}
& V=\left.\pi \cdot\left(8 x-\frac{x^{2}}{2}-\frac{4 x^{3 / 2}}{3}\right)\right|^{4} \\
& V=\pi\left(8(4)-\frac{(4)^{2}}{2}-\frac{4\left(\frac{4}{3} / 2\right.}{3}\right)^{0} \\
& V=\pi(32-8-32 / 3)=\pi\left(24-\frac{32}{3}\right)
\end{aligned}
$$

$$
=\left(\frac{40 \pi}{3}\right)
$$

