Do Now: \#s 9 and 32 from the last page of the Limits Practice packet (Introductory Limits Problems)
9) $\lim _{h \rightarrow 0} \frac{(x+h-h)^{2}-x^{2}}{h}$
32) $\lim _{x \pm 1}\left(\frac{(x-1)}{\left(\sqrt{x^{2}+3}-2\right)} \cdot\left(\frac{\left(\sqrt{x^{2}+3}+2\right)}{\left(\sqrt{x^{2}+3}\right)+2}\right)\right.$

$$
\lim _{h \rightarrow 0} \frac{k(2 x+h)}{\hbar}=2 x
$$

$$
\lim _{x \rightarrow 1} \frac{\left.(x+1) \sqrt{x^{2}+3}+2\right)}{(x+1)(x-1)}=\frac{4}{2}=2
$$

Name:
AP Calculus: Continuity

Date:
Ms. Loughran

Intuitive definition:
A function is continuous if it can be drawn without lifting the pencil from the paper.
Mathematical definition of continuity at a point:
A function is continuous at $x=a$, if and only if:

1) $f(a)$ exists
2) $\lim _{x \rightarrow a} f(x)$ exists (Remember this means $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$)
3) $\lim _{x \rightarrow a} f(x)=f(a)$
1. For what values) of x is each of the following functions discontinuous?
(a) $f(x)=\frac{x}{x+1}$
(b) $f(x)=\frac{x+1}{x^{2}-4 x+3}$
(c) $X=-1$

$$
(x-3)(x-1)
$$

$$
\partial x=3,1
$$

2. Given: $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1, x>1 & \text { or } x<1 \\ 2 & \text { if } x=1\end{array} \quad f(1)=2\right.$

$$
f(1)=2
$$

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=2
$$

$$
f(1)=\lim _{x \rightarrow 1} f(x) \text { so yes }
$$

3. For $x \neq 2, f(x)=\frac{x^{2}+3 x-10}{x-2}$. What value should be assigned to $f(2)$ to make

$$
\begin{aligned}
& f(x) \text { continuous at } x=2 \text { ? } \\
& \quad f(2)=\lim f(x) \\
& \lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}=\lim _{x \rightarrow 2} x+5=7 \\
& f(2)=7
\end{aligned}
$$

Name: \qquad Date: \qquad
AP Calculus AB Continuity
Decide whether or not each graph is continuous at $\mathrm{x}=0$.

(a)

(b)
not continuous e $x=0$
removeable discontinuity

(c)

(e)
not continuous at $x=0$ le we could make it continuous by adehning $f(0)$
letting $f(0)=1$ instead

(d)
not continuous at $x=0$ jump discontinuity not removeable of $f(0)=2$

(f)
not continuous at $x=0$
oscillating discontinuity not removeab 6
4. For each of the following, find a value for the constant k, that will make the function continuous.
a) $f(x)=\left\{\begin{array}{ll}7 x-2 & \text { if } x \leq 1 \\ k x^{2} & \text { if } x>1\end{array} \quad f(1)=5\right.$

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{+}} f(x) \\
\lim _{x \rightarrow 1^{-}} 7 x-2 & =\lim _{x \rightarrow 1^{+}} k x^{2} \\
7(1)-2 & =k(1)^{+} \\
55 & =k
\end{aligned}
$$

b) $f(x)=\left\{\begin{array}{ll}x-k & \text { if } x \leq 2 \\ 2 x-3 & \text { if } x>2\end{array}\right.$ formally $\begin{array}{ll}\end{array}$ max $\lim _{x \rightarrow 2^{-}} x-k=\lim _{x \rightarrow 2^{+}} 2 x-3$

$$
\begin{gathered}
x-k=2 x-3 \quad @ \quad x=2 \\
2-k=2(2)-3 \\
2-k=1 \\
-k=-1 \\
k=1
\end{gathered}
$$

c) $f(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ k & \text { if } x=0\end{cases}$

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\frac{\sin x}{x}}{}=k \\
1=k
\end{gathered}
$$

d) $f(x)=\left\{\begin{array}{ll}\frac{4-\sqrt{x}}{x-16} & \text { if } x \neq 16 \\ k & \text { if } x=16\end{array} \quad f(16)=k\right.$

$$
\begin{gathered}
\lim _{x \rightarrow 16} \frac{4 \sqrt{x}}{\frac{x-16}{(\sqrt{x}-4)(\sqrt{x}+4)}}=\lim _{x \rightarrow 16} \frac{-1}{\sqrt{x}+4}=-\frac{1}{8} \\
k=-\frac{1}{8}
\end{gathered}
$$

it right one
mot 5. Is $f(x)=\frac{1}{x-1}$ continuous at $x=1 ? x=2$?
continuo ovs at $x=1$? $f(1)$ is undefined
continuous at $x=2 ? f(2)=1 \quad\{=1=$ yes

$$
\lim _{x \rightarrow 2} \frac{1}{x-1}=1
$$

6. Given the function $f(x)=|x-3|$. Prove that f is continuous at $x=3$. Graph $f(x)$.

$$
f(3)=0 \quad \begin{gathered}
\text { a). } \\
\lim _{x \rightarrow 3} f(x)=0 \\
=\begin{array}{c}
\text { transformation } \\
\text { of }|x|_{1} \\
\text { moves it } \\
\text { right } 3 \\
\text { continuous }
\end{array} \\
\end{gathered}
$$

