Name:	Date:
AP Calculus Definition of a Derivative	Ms. Loughran

Do Now:

1. What is the slope of the function f(x) = 2x - 3 at (0, -3)? at (-1, -5)? at (2, 1)?

2

2

derivative of f(x)

ス

2. What is the slope of the function $f(x) = x^2$ at (0,0)? at (-2,4)? at (3,9)?

Let's investigate a general curve:

https://youtu.be/fDLGzk9bPP8

The function f' defined by the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is called the derivative of f with respect to x.

The derivative of a function f can be interpreted either as a function whose value at x is the slope of the tangent line to the graph of y = f(x) at x, or alternatively, it can be interpreted as a function whose value at x is the instantaneous rate of change of y with respect to x at the point x.

The **normal line** to a curve at a point is the line perpendicular to the tangent line at that point.

Let's revisit #2 from the Do Now.

y=0

$$(-2,4)$$

 $f'(-2) = 2(-2) = -4$

Equation of the tangent line:
$$y-4 = -4(x+2)$$

Homework 09-19

v

- $(3) \frac{3}{(X+3)^2}$
- 6 -4x+5
- $(\widehat{\mathcal{F}}) = \frac{-\lambda}{(\lambda + 1)^2}$
- (8) $\frac{1}{\sqrt{2x}}$ or $\frac{\sqrt{2x}}{2x}$

() (hven
$$f(x) = x^{2} + 4x + 9$$
, write an equation of
the tangent line $h f(x)$ at $x = 1$.
() need pt
() need pt
() need slope of $f(x)$ at $x = 1$, $f'(1)$
() $f(1) = 1^{2} + 4(1) + 9 = 14$, $(1, 14)$
 $\lim_{h \to 0} \frac{(x+h)^{2} + 4(x+h) + 9 - (x^{2} + 4x + 9)}{h}$
 $\lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} + 4x + 4h}{h} + \frac{4x + 4h}{h} + \frac{4x - 4x - 9}{h} = \lim_{h \to 0} \frac{2xh + h^{2} + 4h}{h}$
 $= \lim_{h \to 0} 2x + h + 4 = 2x + 4 = f'(x)$

$$f'(i) = 2(i) + 4 = 6$$

$$y - 14 = 6(x - i)$$

(2) (iven
$$g(x) = 2x^{2}-3x+5$$
. Write the equation of
the normal line h $g(x)$ at $x=1$.
 $g(1) = 2(1)^{3}-3(1)+5 = 4$ (1,4)
 $g(x+2x)+in^{3}$
 $2(x+h)^{2}-3(x+h)+5 - 2x^{2}+3x-5$
 $\lim_{h \to 0} \frac{2x^{2}+4xh+2n^{2}-3x-3h+5-2x^{2}+3x-5}{h}$
 $\lim_{h \to 0} \frac{2x^{2}+4xh+2n^{2}-3h}{h} = \lim_{h \to 0} \frac{4x+2h-3}{h} = 4x-3$
 $g'(1) = 4(1)-3 = 1$
 $g'(1) = 4(1)-3 = 1$
 $g'(1) = 4(1)-3 = 1$
 $g'(1) = 4(1)-3 = 1$

3 (iven
$$f(x) = -x^2 + dx - 3$$
, find the equation of
the tangunt line $h f(x)$ at $x = 2$.
 $f(2) = -(2)^2 + 2(2) - 3 = -3$ (2,-3)
 $\lim_{h \to 0} \frac{-(x+h)^2 + 2(x+h) - 3 + x^2 - 2x + 3}{h}$
 $\lim_{h \to 0} \frac{2x^2 - 2xh - h^2 + 2x(x+h) - 3 + x^2 - 2x + 3}{h}$

$$\lim_{h \to 0} -2xh - h^{2} + 2h = \lim_{h \to 0} -2x - h + 2 = -2x + 2$$

$$f'(2) = -2(2) + 2 = -2$$

y+3 = -2(x-2)