Name:
AP Calculus Definition of a Derivative

Date:
Ms. Loughran

Do Now:
$2 \quad 2 \quad 2$

1. What is the slope of the function $f(x)=2 x-3$ at $(0,-3) ?$ at $(-1,-5)$? at $(2,1)$?

Inter function

$$
f(x)=m x+b
$$

$$
\text { slope }=m
$$

2. What is the slope of the function $f(x)=x^{2}$ at $(0,0)$? at $(-2,4)$? at $(3,9)$?

Let's investigate a general curve:

The function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f with respect to x.

The derivative of a function f can be interpreted either as a function whose value at x is the slope of the tangent line to the graph of $y=f(x)$ at x, or alternatively, it can be interpreted as a function whose value at x is the instantaneous rate of change of y with respect to x at the point x.

The normal line to a curve at a point is the line perpendicular to the tangent line at that point.

Let's revisit \#2 from the Do Now.

(e) $(0,0)$

$$
f^{\prime}(0)=2(0)=0
$$

Equation of the tangent line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{array}{ll}
\text { point } \\
\text { slope }
\end{array} \quad y-0=0(x-0) \\
& y=0 \\
& y=0 \\
& \text { (e) }(-2,4) \\
& f^{\prime}(-2)=2(-2)=-4
\end{aligned}
$$

Equation of the tangent line:

$$
y-4=-4(x+2)
$$

C $(3,9)$

$$
f^{\prime}(3)=2(3)=b
$$

Equation of the tangent line:

$$
\begin{aligned}
& y-9=6(x-3) \\
& \text { NORMAL line: }
\end{aligned}
$$

Equation of the NORMAL line:

$$
y-9=-\frac{1}{6}(x-3)
$$

Homework 09-19
(3) $\frac{3}{(x+3)^{2}}$
(6) $-4 x+5$
(7) $\frac{-2}{(2 x+1)^{2}}$
(8) $\frac{1}{\sqrt{2 x}}$ or $\frac{\sqrt{2 x}}{2 x}$
(1) Given $f(x)=x^{2}+4 x+9$, write an equation of the tangent line to $f(x)$ at $x=1$.
(1) need pt
(2) heed slope of $f(x)$ at $x=1, f^{\prime}(1)$

$$
\begin{aligned}
& f(1)=1^{2}+4(1)+9=14, \quad(1,14) \\
& \lim _{h \rightarrow 0} \frac{(x+h)^{2}+4(x+h)+9-\left(x^{2}+4 x+9\right)}{h} \\
& \begin{aligned}
\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+4 x+4 h+9-x^{2}-4 x-9}{h} & =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+4 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h+4=2 x+4=f^{\prime}(x)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(1)=2(1)+4 & =6 \\
y-14 & =6(x-1)
\end{aligned}
$$

(2) Given $g(x)=2 x^{2}-3 x+5$. Write the equation of the normal lime to $g(x)$ at $x=1$.

$$
\begin{aligned}
& g^{(1)=2(1)^{2}-3(1)+5=4 \quad(1,4)} \\
& \lim _{h \rightarrow 0} \frac{2(x+h)^{2}-3(x+h)+5-2 x^{2}+3 x-5}{h} \\
& \lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-3 x-3 h+5-2 x^{2}+3 x-5}{h} \\
& \lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-3 h}{h}=\lim _{h \rightarrow 0} 4 x+2 h-3=4 x-3 \\
& \lim _{h} \\
& g^{\prime}(1)=4(1)-3=1
\end{aligned}
$$

(3) Given $f(x)=-x^{2}+2 x-3$, find the equation of the tangent line of $f(x)$ at $x=2$.

$$
\begin{aligned}
& f(2)=-(2)^{2}+2(2)-3=-3 \quad(2,-3) \\
& \lim _{h \rightarrow 0} \frac{-(x+h)^{2}+2(x+h)-3+x^{2}-2 x+3}{h} \\
& \lim _{h \rightarrow 0} \frac{-x^{2}-2 x h-h^{2}+2 x+2 h-3+x^{2}-2 x+3}{h} \\
& \lim _{h \rightarrow 0} \frac{-2 x h-h^{2}+2 h}{h}=\lim _{h \rightarrow 0}-2 x-h+2=-2 x+2 \\
& f^{\prime}(2)=-2(2)+2=-2 \\
& y+3=-2(x-2)
\end{aligned}
$$

