Name:
AP Talc AB: More Practice with Derivative Definition

Date:
Ms. Loughran

The function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f with respect to x.

The derivative of a function f can be interpreted either as a function whose value at x is the slope of the tangent line to the graph of $y=f(x)$ at x, or alternatively, it can be interpreted as a function whose value at x is the instantaneous rate of change of y with respect to x at the point x.

The normal line to a curve at a point is the line perpendicular to the tangent line at that point.

1. Given $f(x)=2 x^{2}-7 x+1$.
(a) Find $f^{\prime}(x)=4 x-7$
(b) Find $f^{\prime}(-3)=4(-3)-7=-19$
(c) Write an equation of the tangent line of $f(x)$ at $x=-3$.
a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-7(x+h)+1-\left(2 x^{2}-7 x+1\right)}{h}$

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{}{} \begin{array}{c}
h+4 x+2 h-7) \\
\text { c) } \\
f(-3)= \\
=2(-3)^{2}-7(-3)+1=40 \\
y-40=-19(x+3)
\end{array} \quad(-3,40)
\end{gathered}
$$

c) slope $=0$
2. Given $f(x)=4 x-3 x^{2}$
(a) Find $f^{\prime}(x) .4-6 X$
(b) Write an equation of the tangent line to $f(x)$ when $x=-1$.
(c) Find a value of x when $f(x)$ will have a horizontal tangent line.

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 4-6 x=0 \\
& x=\frac{4}{6} \text { or } \frac{2}{3}
\end{aligned}
$$

a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{4(x+h)-3(x+h)^{2}-4 x+3 x^{2}}{h}$

$$
\lim _{h \rightarrow 0}^{h \rightarrow 0} \frac{4 x+4 h-3 x^{x}-6 x h-3 h^{2}-4 x+3 x^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(4-6 x-3 h)}{k}=4-6 x
$$

b)

$$
\begin{aligned}
f(-1)=4(-1)-3(-1)^{2} & =-7 \quad f^{\prime}(-1)=4-6(-1)=10 \\
y+7 & =10(x+1)
\end{aligned}
$$

3. Given $f(x)=3 x^{2}-4$
(a) Find $f^{\prime}(x)$.
(b) Find $f^{\prime}(-2), f^{\prime}(0)$, and $f^{\prime}(3)$.
(c) Write an equation of the tangent line at $x=-2$.
(d) Write an equation of the normal line at $x=-2$.
a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-4-3 x^{2}+4}{h}$
b) $f^{\prime}(-2)=6(-2)=-12 \quad f^{\prime}(0)=6(0)=0 \quad f^{\prime}(3)=6(3)=18$
c) $f(-2)=3(-2)^{2}-4=8 \quad y-8=-12(x+2)$
d) $y-8=\frac{1}{12}(x+2)$
