Name: _____ AP Calculus AB Date: _____ Ms. Loughran

Do Now:

1. Given
$$y = \frac{1 + x \tan x}{\sin x \sec x}$$
, find y'.
Sint. $\frac{1}{\cos x}$
 $y = \frac{1 + x \tan x}{\tan x}$
 $y = \frac{1 + x \tan x}{\tan x}$
 $y = \frac{1}{\tan x} + \frac{x \tan x}{\tan x}$
 $y = \cos x + x$
 $y' = -\csc^2 x + 1$ or $1 - \csc^2 x$
 $y' = -\cot^2 x$

 $\sin^{2}x + \cos^{2}x = 1$ $| + \cos^{2}x = (sc^{2}x)$

- 3. Let *f* be the function given by $f(x) = 5e^{3x^3}$. For what positive value of *a* is the slope of the line tangent to the graph of *f* at (a, f(a)) equal to 6?
 - (A) 0.142 (a) 0.344 (C) 0.393 (D) 0.595 (E) 0.714 p|cn: f'(x) = 6 $y_1 = f(x)$ $y_2 = f'(x)$ pt of intersection $y_3 = b$
- 4. An object moves along the x-axis so that at time $t, t \ge 0$, its position is given by $x(t) = t^4 + t^3 30t^2 + 88t$. At the instant when the acceleration becomes zero, the velocity of the object is approximately

Homework 10-19

6458 - 1 - Page 1

AP Calculus AB Intro to Linear Motion - Multiple Choice Practice

Name:

- A particle moves along the x-axis so that its position at time t is given by $x(t) = 2t^2 12t + 9$. For what value of t 1) is the particle at rest?
 - A) 1 B) 9 C) 3 D) 4 E) 0 v(t) = 4t - 124t - 12 = 0A particle travels along the x-axis so that at any time $t \ge 0$, its position is given by $x(t) = t^3 - 9t^2 + 24t + 2$. For
- 2) what value(s) of t is the velocity equal to zero?
 - A) t = 3, only B) t = 0 and t = 3C) t = 4, only D) t = 2, only $U(t) = 3t^{2} - 18t + 24$ $V(t) = 3(t^{2} - bt + 8)$ A particle moves along a horizontal axis so that its position is given by $x(t) = 4t^{5} - 5t^{3}$ for any time t. How many times does the particle change direction?
- 3) times does the particle change direction? . 113

A) 1
B) 2
$$y = 2$$
 C) 3 $V(t) = 0$
 $t^2 = \frac{3}{4}$ D) 0 E) 5
 $V(t) = 20t^4 - 15t^2$
 $V(t) = 5t^2(4t^2 - 3)$
A particle moves on the x-axis such that its position at any time $t \ge 0$ is given by $x(t) = t^3 - 9t^2 - 740$ What is the

4) Ap any time l > 0 is given by $x(l) = l^3 - 9l^4 + 24l^2$. What is the velocity of the particle when its acceleration is zero?

A) 24 B) 105 C) 3 D) 0 (E)
$$-3$$

 $v(4) = 3t^{2} - 18t + 24$
 $a(t) = bt - 18$
 $t = 3$

A particle moves along a horizontal axis so that its position is defined by $S(t) = 4 \cos \frac{\pi}{2}t$ for $0 \le t \le 5$. What is 5) the velocity of the particle at the time its acceleration is first equal to zero?

A)
$$-4\pi$$
 B) 4π C) -2π D) $-\pi^2$ E) 2π
 $V(t) = -H\sin(\mp t) \cdot \mp = -\pi \sin(\mp t)$
 $a(t) = -\pi \cos(\mp t) \cdot \mp = -\pi \sin(\mp t)$
A particle moves along the x-axis in such a way that its position at any time t in since here(t) = 4 add

oves along the x-axis in such a way that its position at any time t is given by $x(t) = t^4 - 8t^3 + 18t^2 + 2$ 6) for t > 0. At what time is acceleration of the particle equal to 36?

A) 3
(B) 4

$$V(t) = 4t^{3} - 24t^{2} + 36t$$

 $a(t) = 12t^{2} - 48t + 36$
 $(2t^{2} - 48t + 36)$
 $(2t^{2} - 48t = 0)$
 $(2t^{2} -$

 $3 \left(\frac{\sqrt{2}}{2} + 1 \right)$ $\frac{3\sqrt{2}}{2} + 1$

7) A particle moves along the x-axis so that at any time $t \ge 0$, its position is given by $x(t) = 2t + \sin(\pi t)$. What is the acceleration of the particle at time $t = \frac{3}{2}$? A) 0 B) π C) 2 D) π^2 E) $-\pi^2$ 54 - 18 $V(t) = bt^2 - bt$

8) If the position of a particle moving on the x-axis at any time t is given by $x(t) = 2t^3 - 3t^2$, what is the average acceleration of the particle for $0 \le t \le 3$?

A) 15 B) 9 C) 8 D) 12 E) 18
Charge in V
$$V(3) - V(0) = 12$$

 $3 = 12$

9) The position of a particle moving on a horizontal axis for time *t*, where $t \ge 0$, is $S(t) = 3 \sin \frac{1}{2}t + 1$. What is the average velocity of the particle for $0 \le t \le \frac{3\pi}{2}$?

A)
$$\frac{\pi}{\sqrt{2}}$$

(B) $\frac{\sqrt{2}}{\pi}$
(C) $-\frac{\pi}{\sqrt{2}}$
(D) $\frac{3\sqrt{2}}{\pi}$
(E) $\frac{-\sqrt{2}}{\pi}$
(E) $\frac{-\sqrt{2}}{\pi$