Name:
AP Calculus AB

Do Now:

1. Given $y=\frac{1+x \tan x}{\sin x \sec x}$, find y^{\prime}.

$$
\begin{aligned}
& \sin x \cdot \frac{1}{\cos x} \\
& y=\frac{1+x \tan x}{\tan x} \\
& y=\frac{1}{\tan x}+\frac{x \tan x}{\tan x} \\
& y=\cot x+x \\
& y^{\prime}=-\csc ^{2} x+1 \text { or } 1-\csc ^{2} x \\
& y^{\prime}=-\cot ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{2} x+\cos ^{2} x & =1 \\
1+\cot ^{2} x & =\csc ^{2} x
\end{aligned}
$$

Date:
Ms. Loughran

RADIAN MODE
zoom 6 Window

* 3 decimal place (rounded or truncated)

Date:
Ms. Loughran

1. The function f defined by $f(x)=e^{3 x}+6 x^{2}+1$ has a horizontal tangent at $x=$
(A) -0.144
(B) -0.150
(D) -0.162
(E) -0.168

Plan:

$$
\begin{array}{rlr}
f^{\prime}(x) & =0 & \quad \text { alpha } \\
y_{1} & =f(x) & \frac{d}{d} \\
y_{2} \rightarrow \text { math } 8 & \left.\frac{d x}{d x}\left(y_{1}\right)\right|_{x=x}
\end{array}
$$ choices for x intersection

put table sin ASk mode

2. Let $f(x)=2 e^{3 x}$ and $g(x)=5 x^{3}$. At what value of x do the graphs of f and g have parallel tangents?

$$
f^{\prime}(x)=2 \cdot e^{3 x} \cdot 3=6 e^{3 x} \quad g^{\prime \prime}(x)=15 x^{2}
$$

(A) -0.445
(.) -0.366
(C) -0.344
(D) -0.251
(E) -0.165

Plan: find where they have same shape

$$
f^{\prime}(x)=g^{\prime}(x)^{\prime}
$$

3. Let f be the function given by $f(x)=5 e^{3 x^{3}}$. For what positive value of a is the slope of the line tangent to the graph of f at $(a, f(a))$ equal to 6 ?
(A) 0.142
(ङ) 0.344
(C) 0.393
(D) 0.595
(E) 0.714

Plan: $\quad f^{\prime}(x)=6$
$y_{1}=f(x)$
$\left.\begin{array}{l}y_{2}=f^{\prime}(x) \\ y_{3}=6\end{array}\right\}$ pt of intersection
4. An object moves along the x-axis so that at time $t, t \geq 0$, its position is given by $x(t)=t^{4}+t^{3}-30 t^{2}+88 t$. At the instant when the acceleration becomes zero, the velocity of the object is approximately
(A) 244
(B) 12
(C) 0
(D) -12
(E) -24

$$
\left.\begin{array}{l}
y_{1}=x(t) \\
y_{2}=x^{\prime}(t) \quad\left(\left.\frac{d x}{d x}\left(x_{1}\right)\right|_{x=x}\right. \\
y_{3}=x^{\prime \prime}(t)\left(\left.d x\left(y_{2}\right)\right|_{x=x}\right) \\
y_{4}=0
\end{array}\right\} \begin{aligned}
& \text { phot of ens } \\
& \text { int }
\end{aligned}
$$

Name:
AP Calculus AB Intro to Linear Motion - Multiple Choice Practice

1) A particle moves along the x -axis so that its position at time t is given by $\mathrm{x}(t)=2 t^{2}-12 t+9$. For what value of t is the particle at rest?
A) 1
B) 9
C) 3
D) 4
E) 0

$$
\begin{aligned}
v(t)=4 t-12 \quad 4 t-12 & =0 \\
t & =3
\end{aligned}
$$

2) A particle travels along the x -axis so that at any time $t \geq 0$, its position is given by $\mathrm{x}(t)=t^{3}-9 t^{2}+24 t+2$. For what values) of t is the velocity equal to zero?
A) $t=3$, only
B) $t=0$ and $t=3$
C) $t=4$, only
D) $t=2$, only
E) $t=2$ and $t=4$

$$
\begin{aligned}
& v(t)=3 t^{2}-18 t+24 \\
& v(t)=3\left(t^{2}-6 t+8\right)
\end{aligned}
$$

$$
\begin{gathered}
3(t-4)(t-2)=0 \\
t=4 / t=2
\end{gathered}
$$

3) A particle moves along a horizontal axis so that its position is given by $x(t)=4 t^{5}-5 t^{3}$ for any time t. How many
times does the particle change direction?
A) 1
B) $2 \frac{\sqrt{4}}{2}=2$
C) $\begin{array}{rl}3 & V(t)\end{array}=0$
D) 0
E) 5

$$
t=\frac{+\sqrt{3}}{2}
$$

$$
\begin{aligned}
& v(t)=20 t^{4}-15 t^{2} \\
& v(t)=5 t^{2}\left(4 t^{2}-3\right) \\
& 0=5 t^{2}\left(4 t^{2}-3\right)
\end{aligned}
$$

4) A particle moves on the x-axis such that its position at any time $t>0$ is given by $\mathrm{x}(t)=t^{3}-9 t^{2}-24$. What is the velocity of the particle when its acceleration is zero?
A) 24
B) 105
C) 3
D) 0

$$
\begin{aligned}
& v(t)=3 t^{2}-18 t+24 \\
& a(t)=6 t-18
\end{aligned}
$$

$$
v(3)=27-54+24=-3
$$

5) A particle moves along a horizontal axis so that its position is defined by $\mathrm{S}(t)=4 \cos \frac{\pi}{2} t$ for $0 \leq t \leq 5$. What is the velocity of the particle at the time its acceleration is first equal to zero?
A) -4π
B) 4π
C) -2π
D) $-\pi^{2}$
E) 2π

$$
\begin{aligned}
& V(t)=-4 x \sin \left(\frac{\pi}{2} t\right) \cdot \frac{\pi}{2}=-\pi \sin \left(\frac{\pi}{2} t\right) \\
& a(t)=-\pi \cos \left(\frac{\pi}{2} t\right) \cdot \frac{\pi}{2}=-\frac{\pi^{2}}{2} \cos \left(\frac{\pi}{2} t\right)
\end{aligned}
$$

6) A particle moves along the x -axis in such a way that its position at any time t is given by $\mathrm{x}(t)=t^{4}-8 t^{3}+18 t^{2}+2$ for $t>0$. At what time is acceleration of the particle equal to 36 ?
A) 3
(B) 4
C) 12
D) 2
E) 6

$$
\begin{aligned}
& v(t)=4 t^{3}-24 t^{2}+36 t \\
& a(t)=12 t^{2}-48 t+36
\end{aligned}
$$

$$
12 t^{2}-48 t+36=36
$$

$$
12 t^{2}-48 t=0
$$

$$
t=0
$$

$$
12 t(t-4)=0 \quad t=4
$$

7) A particle moves along the x-axis so that at any time $t \geq 0$, its position is given by $x(t)=2 t+\sin (\pi t)$. What is the acceleration of the particle at time $t=\frac{3}{2}$?
A) 0
B) π
C) 2
D) π^{2}
E) $-\pi^{2}$

$$
\begin{gathered}
54-18 \\
v(t)=6 t^{2}-6 t
\end{gathered}
$$

8) If the position of a particle moving on the x -axis at any time t is given by $\mathrm{x}(t)=2 t^{3}-3 t^{2}$, what is the average acceleration of the particle for $0 \leq t \leq 3$?
A) 15
B) 9
C) 8 chang in V

$$
\frac{V(3)-v(0)}{3}=12
$$

D) 12
E) 18
9) The position of a particle moving on a horizontal axis for time t, where $t \geq 0$, is $\mathrm{S}(t)=3 \sin \frac{1}{2} t+1$. What is the average velocity of the particle for $0 \leq t \leq \frac{3 \pi}{2}$?
A) $\frac{\pi}{\sqrt{2}}$
(B) $\frac{\sqrt{2}}{\pi}$
C) $-\frac{\pi}{\sqrt{2}}$
D) $\frac{3 \sqrt{2}}{\pi}$
E) $\frac{-\sqrt{2}}{\pi}$
($)^{2}$

$$
\begin{aligned}
& \text { () } V(t)=2+\cos (\pi t) \cdot \pi \\
& a(t)=-\pi \sin (\pi t) \cdot \pi=-\pi^{2} \sin (\pi t) \\
& a(3 / 2)=-\pi^{2} \sin \left(\frac{3 \pi}{2}\right)=\pi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& S(0)=3 \sin 0+1 \\
& S\left(\frac{3 \pi}{2}\right)=3 \sin \frac{3 \pi t}{4} t+1
\end{aligned}
$$

$$
3\left(\frac{\sqrt{2}}{2}\right)+1
$$

$$
\frac{3 \sqrt{2}}{2}+1
$$

