Continuing from Friday...
4. An object moves along the x-axis so that at time $t, t \geq 0$, its position is given by $x(t)=t^{4}+t^{3}-30 t^{2}+88 t$. At the instant when the acceleration becomes zero, the velocity of the object is approximately
(A) 244
b) 12
(C) 0
(D) -12
(E) -24

Plan:
need to find where $a(t)=0$
and then plug that value of t
into velocity
call

$$
\begin{aligned}
& y_{1}=t^{4}+t^{3}-30 t^{2}+88 t \quad 6 x(t) \\
& y_{2}:\left.\frac{d}{d x}\left(y_{1}\right)\right|_{x=x} \quad \operatorname{tv}(t) \\
& y_{3}=\left.\frac{d}{d x}\left(y_{2}\right)\right|_{x=x} \quad t^{a}(t)
\end{aligned}
$$

$$
y_{4}=0
$$

cake. pp of intersection b/w y_{3} and y_{4} and store value $A=1.999 \ldots$
X sta A

$$
Y_{2}(A)=12.0000
$$

Do Now: \#5 from Friday's sheet

5. A particle moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=\frac{t}{t^{2}+4}$. The particle is at rest when $t=$
(A) 0
(B) $\frac{1}{4}$
(C) 1
(E) 4

Plan: $v(t)=0$
6. A particle moves along the x-axis so that its velocity v at time t, for $0 \leq t \leq 5$, is given by $v(t)=\ln \left(t^{2}-3 t+3\right)$. The particle is at position $x=8$ at $t=0$. Find the acceleration of the particle at time $t=4$.

$$
\begin{aligned}
& \text { Plan } v^{\prime}(4) \\
& a(4)=.714
\end{aligned}
$$

7. An object moves along the x-axis with initial position $x(0)=2$. The velocity of the object at time $t \geq 0$ is given by $v(t)=\sin \left(\frac{\pi}{3} t\right)$. What is the acceleration of the object at time $t=4$?

$$
V^{\prime}(4)=a(4)=-.524 \text { or }-.523
$$

8. The position of a particle moving on the x-axis at time $t>0$ seconds is $x(t)=e^{t}-\sqrt{t}$.
(a) Find the average velocity of the particle over the interval $1 \leq t \leq 3$.
(b) In what direction and how fast is the particle moving at $t=1$ seconds?
(c) For what values of t is the particle moving to the right?
(d) Find the position of the particle when its velocity is zero.

$$
\text { (a) } \frac{x(3)-x(1)}{3-1}=8.317 \text { or } 8.318
$$

(b) $v(1)=2.218$ th the right
(c) $t>.176$ or $t>.175$
(d)

$$
\begin{gathered}
t=A=.175 \text { or } .176 \\
x(A)=.772 \text { or } .773
\end{gathered}
$$

1. A particle moves along a line so that at time t, where $0 \leq t \leq \pi$, its position is given by $s(t)=-4 \cos t-\frac{t^{2}}{2}+10$. What is the velocity of the particle when its acceleration is zero?
(A) -5.19
(B) 0.74
(C) 1.32
(D) 2.55
(E) 8.13
2. If $f(x)=\frac{e^{2 x}}{2 x}$, then $f^{\prime}(x)=$
(A) 1
(B) $\frac{e^{2 x}(1-2 x)}{2 x^{2}}$
(C) $e^{2 x}$
(D) $\frac{e^{2 x}(2 x+1)}{x^{2}}$
(E) $\frac{e^{2 x}(2 x-1)}{2 x^{2}}$
3. $\lim _{h \rightarrow 0} \frac{\ln (e+h)-1}{h}$ is
(A) $f^{\prime}(e)$, where $f(x)=\ln x$
(B) $f^{\prime}(e)$, where $f(x)=\frac{\ln x}{x}$
(C) $f^{\prime}(1)$, where $f(x)=\ln x$
(D) $f^{\prime}(1)$, where $f(x)=\ln x$
(E) $f^{\prime}(0)$, where $f(x)=\ln x$
4. If $f(x)=e^{x}$, then $\ln \left(f^{\prime}(2)\right)=$
(A) 2
(B) 0
(C) $\frac{1}{e^{2}}$
(D) $2 e$
(E) e^{2}

$$
\begin{aligned}
& f^{\prime}(x)=e^{x} \\
& f^{\prime}(2)=e^{2} \\
& \ln e^{2}=2
\end{aligned}
$$

5. The slope of the tangent line to the graph of $y=\ln \left(\frac{x}{2}\right)$ at $x=4$ is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$

(C) $\frac{1}{2}$
(D) 1
(E) 4
6. If $f(x)=x \ln \left(x^{2}\right)$, then $f^{\prime}(x)=$
(A) $\ln \left(x^{2}\right)+1$
(B) $\ln \left(x^{2}\right)+2$
(C) $\ln \left(x^{2}\right)+\frac{1}{x}$
(D) $\frac{1}{x^{2}}$
(E) $\frac{1}{x}$
7. The position of a particle moving along a straight line at any given time t is given by $x(t)=\frac{4}{3} t^{3}-6 t^{2}+8 t$.
(a) What is the average velocity of the particle for $0 \leq t \leq 3$?
(b) When is the particle at rest?
(c) During what time interval(s) is the particle moving to the left? Right?
a) 2
b) $t=1,2$
c) $\mathrm{kft}: 1<t<2$
right. $0<t<1, t \geqslant 2$
