Name:
AP Call

$$
f^{\prime}(x)= \begin{cases}6 a x+2 b & x \leq 1 \\ 4 a x^{3}-8 b x-3 & x>1\end{cases}
$$

Do Now:
Date: \qquad
Ms. Loughran

1. If the function $f(x)=\left\{\begin{array}{ll}3 a x^{2}+2 b x+1, & x \leq 1 \\ a x^{4}-4 b x^{2}-3 x, & x>1\end{array}\right.$ is differentiable for all real values of x, then $b=$
(A) 0
(B) $-\frac{11}{4}$
(4) $\frac{1}{4}$
(D) $-\frac{7}{16}$
(E) $-\frac{1}{4}$

Continuous
diff

$$
\begin{aligned}
& 3 a x^{2}+2 b x+1=a x^{4}-4 b x^{2}-3 x c x=1 \\
& 3 a+2 b+1=a-4 b-3 \\
& 2 a+6 b=-4 \\
& (a+3 b=-2)-2
\end{aligned}
$$

$$
\begin{aligned}
& 6 a x+2 b=4 a x^{3}-8 b x-3 \quad c x=1 \\
& 6 a+2 b=4 a-8 b-3 \\
& 2 a+10 b=-3 \\
& -2 a-6 b=4
\end{aligned}
$$

2. The position of a particle moving along the x-axis at time t is given by $x(t)=e^{\cos 2 t}, 0 \leq t \leq \pi$. For which of the following values of t will $x^{\prime}(t)=0$?

$$
b=\frac{1}{4}
$$

I. $\quad t=0$
II. $\quad t=\frac{\pi}{2}$
III. $\quad t=\pi$
(A)I only
(B) II only
(C) I and III only
(D) I and II only
(2) I, II and III

$$
\begin{aligned}
x^{\prime}(t) & =e^{\cos 2 t} \cdot-\sin 2 t \cdot 2 \\
x^{\prime}(t) & =-2 e^{\cos 2 t} \sin 2 t \\
& \frac{-2 e^{\cos 2 t} \sin 2 t=0}{-2 e^{\cos 2 t}} \neq 0 \quad \sin 2 t=0
\end{aligned}
$$

Finishing up \#12 from yesterday's packet:
12. $f(x)=\left\{\begin{array}{lll}\frac{a x^{-1}}{x}, & x \leq 1 \\ 12-b x^{2}, & x>1\end{array} \quad f^{\prime}(x)= \begin{cases}-a x^{-2} \text { or } \frac{-a}{x^{2}} & x \leq 1 \\ -2 b x & x>1\end{cases}\right.$

Cont:
diff

$$
\begin{aligned}
& \frac{a}{x}=12-b x^{2} \quad e x=1 \\
& a=12-b
\end{aligned}
$$

$$
-\frac{a}{x^{2}}=-2 b x \quad e x=1
$$

$$
-a=-2 b
$$

$$
\begin{aligned}
12-b & =2 b \\
12 & =3 b \\
4 & =b
\end{aligned}
$$

$$
a=12-4=8
$$

(Differentiabiligy Homevoric)

$$
\begin{aligned}
& \text { (1) } y=x^{5} \sec \left(\frac{1}{x}\right) \\
& y^{\prime}=5 x^{4} \cdot \sec \frac{1}{x}+\sec \frac{1}{x} \tan -\frac{1}{x} \cdot \frac{-1}{x^{2}} \cdot x^{5} \\
& y^{\prime}=5 x^{4} \sec \left(\frac{1}{x}\right)-x^{3} \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 2=\cos (\cos x) \\
& y^{\prime}=-\sin (\cos x) \cdot-\sin x \\
& y^{\prime}=\sin (\cos x) \sin x
\end{aligned}
$$

(3)

$$
\begin{array}{ll}
y=x \cos 3 x \quad x=\pi \\
y^{\prime}=1 \cdot \cos 3 x+x-\sin (3 x) \cdot 3 \\
y^{\prime}=\cos 3 x-\left.3 x \sin (3 x)\right|_{x=\pi} \cos 3 \pi-3 \pi \sin 3 \pi=-1 \\
y=\pi \cos 3 \pi & (4) y=\cot 3(\pi-\theta) d y / d \theta \\
y=\pi(-1)=-\pi & y^{\prime}=3 \cot ^{2}(\pi-\theta) \cdot-\csc ^{2}(\pi-\theta) \cdot-1 \\
y^{\prime}=3 \cot ^{2}(\pi-0) \csc ^{2}(\pi-\theta) \\
y+\pi=-(x-\pi) & \\
y+\pi=-x+\pi & \\
y=-x &
\end{array}
$$

(5) $f(x)=\left\{\begin{array}{cl}x^{2} & x \leq 1 \\ \sqrt{x} & x>1\end{array}\right.$ continuous

$$
\begin{aligned}
& f^{\prime}(x)=2 x \\
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \text { - not differentiable at } 1
\end{aligned}
$$

(6)

$$
\begin{gathered}
3 x^{2}=a x+b \cdot e x=1 \\
3(1)^{2}=a(1)+b \\
3=a+b
\end{gathered}
$$

$$
f(x)= \begin{cases}3 x^{2} & x \leq 1 \\ a x+b & x>1\end{cases}
$$

$$
f^{\prime}(x)= \begin{cases}b x & x \leq 1 \\ a & x>1\end{cases}
$$

$$
\begin{aligned}
& a=6 \\
& b=-3
\end{aligned}
$$

$$
\begin{array}{cr}
6 x=a & \\
6(1)=a & \sin c t \\
6=a & 3=a+b \\
& \\
& 3=-b \\
& b=-3
\end{array}
$$

(7) $\frac{d^{87}}{d x^{77}}[\sin x]:=-\cos x$.
(8) $\frac{d^{100}}{d x^{100}} \cos x-\cos x$.

$$
\begin{aligned}
& d / d x=\cos x \\
& d^{2} / 1 x^{2}=-\sin x \\
& d^{3} / d x^{3}=-\cos x \\
& d^{4} / d x^{4}=\sin x \\
& d^{5} / d x^{5}=\cos x
\end{aligned}
$$

$$
\begin{aligned}
& d / d x=-\sin x \\
& d^{2} / d x^{2}=-\cos x \\
& d^{3} / d x^{3}=\sin x \\
& d^{4} / d y=\cos x
\end{aligned}
$$

(9)
(a) all x
(f) $x \neq n \pi, n \in Z$
(b) all x
(g) $x \neq(n) \pi \quad n \in$ old z
(c) $x \neq k / 2 / 2 \quad k \in$ ord
(h) $x \neq n \pi / 2, n \in z \quad-\operatorname{mol} u d y s, 0 \pi, 2 \pi / 2,3$
(d) $x \neq n \pi, \quad n \in Z$
(i) all x
(e) $x \neq \pi / 2+n \pi \quad n \in \dot{z}$ ord

$1+\cos x=0$	$2-\sin x=0$	$\sin x \cos x=0$
π	$\cos x=-1$	$-\sin x=-2$

Textbook p. 115
(40) If thas a doriv © a ther it is cont e a True
(4i) If f is conte $x=0$, then ither a deriv. O $x=a$ False

$$
f(x)= \begin{cases}2 x+1 & x \leq 0 \\ x^{2} 11 & x \geq 0\end{cases}
$$

(44) $\left.L H D \quad 2\right|_{x=0} 2$ (B)
(45) RHD $\left.2 x\right|_{x=c} \quad O$ (c)

Name:
AP Calculus AB Homework

Date:
Ms. Loughran

For 1 and 2, find $\frac{d y}{d x}$.

1. $y=x^{5} \sec \left(\frac{1}{x}\right)$
2. $y=\cos (\cos x)$
3. Find an equation for the tangent line to $y=x \cos 3 x$ at $x=\pi$.
4. If $y=\cot ^{3}(\pi-\theta)$, find $\frac{d y}{d \theta}$.
5. Let

$$
f(x)= \begin{cases}x^{2}, & x \leq 1 \\ \sqrt{x}, & x>1\end{cases}
$$

Determine whether f is differentiable at $x=1$. If so, find the value of the derivative there.
6. Let

$$
f(x)= \begin{cases}3 x^{2}, & x \leq 1 \\ a x+b, & x>1\end{cases}
$$

Find the values of a and b so that f will be differentiable at $x=1$.
7. $\frac{d^{87}}{d x^{87}}[\sin x]$
8. $\frac{d^{100}}{d x^{100}}[\cos x]$
9. In each part, determine where f is differentiable.

36. $C(x)=x|x|$
37. Show that the function

$$
f(x)=\left\{\begin{array}{lr}
0, & -1 \leq x<0 \\
1, & 0 \leq x \leq 1
\end{array}\right.
$$

is not the derivative of any function on the interval $-1 \leq x \leq 1$.
38. Writing to Leam Recall that the numerical derivative (NDER) can give meaningless values at points where a function is not differentiable. In this exercise, we consider the numerical derivatives of the functions $1 / x$ and $1 / x^{2}$ at $x=0$.
(a) Explain why neither function is differentiable at $x=0$.
(b) Find NDER at $x=0$ for each function.
(c) By analyzing the definition of the symmetric difference quotient, explain why NDER returns wrong responses that are so different from each other for these two functions.
39. Let f be the function defined as

$$
f(x)= \begin{cases}3-x, & x<1 \\ a x^{2}+b x, & x \geq 1\end{cases}
$$

where a and b are constants.
(a) If the function is continuoss for all x, what is the relationship between a and b ?
(b) Find the unique values for a and b that will make f both continuous and differentiable.

Standardized Test Questions

You may use a graphing calculator to solve the following problems.
40. True or False If f has a derivative at $x=a$, then f is continuous at $x=a$. Justify your answer.
41. True or False If f is continuous at $x=a$, then f has a derivative at $x=a$. Justify your answer.
42. Multiple Choice Which of the following is true about the graph of $f(x)=x^{4 / 5}$ at $x=0$?
(A) It has a corner.
(B) It has a cusp.
(C) It has a vertical tangent.
(D) It has a discontinuity.
(E) $f(0)$ does not exist.
43. Multiple Choice Let $f(x)=\sqrt[3]{x-1}$. At which of the following points is $f^{\prime}(a) \neq \operatorname{NDER}(f(x), x, a)$?
(A) $a=1$
(B) $a=-1$
(C) $a=2$
(D) $a=-2$
(E) $a=0$

In Exercises 44 and 45, let

$$
f(x)=\left\{\begin{array}{ll}
2 x+1, & x \leq 0 \\
x^{2}+1, & x>0
\end{array} \quad f^{\prime}(x)=\left\{\begin{array}{c}
2 \\
2 x
\end{array}\right.\right.
$$

44. Multiple Choice Which of the following is equal to the lefthand derivative of f at $x=0$?
(A) $2 x$
(B) 2
(C) 0
(D) $-\infty$
(E) ∞
45. Multiple Choice Which of the following is equal to the righthand derivative of f at $x=0$?
(A) $2 x$
(B) 2
(C) 0
(D) $-\infty$
(E) ∞

Explorations

46. (a) Enter the expression " $x<0$ " into Y1 of your calculator using "<" from the TEST menu. Graph Y1 in DOT MODE in the window $[-4.7,4.7]$ by $[-3.1,3.1]$.
(b) Describe the graph in part (a).
(c) Enter the expression " $x \geq 0$ " into Y1 of your calculator using " \geq " from the TEST menu. Graph Y1 in DOT MODE in the window $[-4.7,4.7]$ by $[-3.1,3.1]$.
(d) Describe the graph in part (c).
47. Graphing Piecewise Functions on a Calculator Let

$$
f(x)= \begin{cases}x^{2}, & x \leq 0 \\ 2 x, & x>0\end{cases}
$$

(a) Enter the expression " $\left(\mathrm{X}^{2}\right)(\mathrm{X} \leq 0)+(2 \mathrm{X})(\mathrm{X}>0)$ " into Y1 of your calculator and draw its graph in the window $[-4.7,4.7]$ by $[-3,5]$.
(b) Explain why the values of Y1 and $f(x)$ are the same.
(c) Enter the numerical derivative of Y1 into Y2 of your calculator and draw its graph in the same window. Turn off the graph of Y1.
(d) Use TRACE to calculate $\operatorname{NDER}(\mathrm{Y} 1, x,-0.1)$, $\operatorname{NDER}(\mathrm{Y} 1, x, 0)$, and $\operatorname{NDER}(\mathrm{Y} 1, x, 0.1)$. Compare with Section 3.1, Example 6.

Extending the Ideas

48. Oscillation There is another way that a function might fail to be differentiable, and that is by oscillation. Let

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

(a) Show that f is continuous at $x=0$.
(b) Show that

$$
\frac{f(0+h)-f(0)}{h}=\sin \frac{1}{h} .
$$

(c) Explain why

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
$$

does not exist.
(d) Does f have either a left-hand or right-hand derivative at $x=0$?
(e) Now consider the function

$$
g(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Use the definition of the derivative to show that g is differentiable at $x=0$ and that $g^{\prime}(0)=0$.

