Name: \qquad Date: \qquad
AP Calculus AB Using Graphs of Derivatives
1.

The graphs (\mathbf{i}, (ii), and (iii) given below are the graphs of a function f and its first two derivatives f^{\prime} and $f^{\prime \prime}$ (though not necessarily in that order) Identify which of these graphs is the graph of f, which is that of f^{\prime} and which is that of $f^{\prime \prime}$. Justify your answer.

2.

The graph below is the graph of the derivative of a function f. Use this graph to answer the following questions about. f on the interval $(0,10)$. In each case be sure to justify your answer.

a. On what subinterval(s) is f increasing? $(2,6) \cup(8,10)$
b. On what subinteryal(s) is fore decreasing? $(0,2),(6,8)$
c. Find the x^{f}-coordinates of all relative minima of $f . x=2,8 \mathrm{blc}$
d. Find the x-coordinates of all relative those values $x=b \quad b / c$
e. On what, subinterval(s) is f, concave up?
f. f^{16} th hat subinteryar (k) is concave down?
g. Find the x-coordinates of an points of inflection of $f . x=4,7,9$

- to - $\downarrow \nearrow$

$$
\text { (a) } f^{\prime \prime}(x)+0-
$$

(c)

(1) Let the graph in (d) be that of $y=h(x)$.

Which of the others is the graph of $y=h^{\prime}(x)$? $k(X)$
(2) Which is the graph of $y=f^{\prime}(x)$? $h(x)$
(3) Which is the graph of $y=g^{\prime}(x)$? $f(x)$
(4) Which is the graph of $y=g^{\prime \prime}(x)$? $h(x)$
(s) Which is the graph of $y=g^{\prime \prime \prime}(x)$? $k(x)$

CONCLUSIONS ABOUT FUNCTIONS FROM THEIR DERIVATIVES

1. If $f^{\prime}(x)>0$ on the interval $(\mathrm{a} ; \mathrm{b})$, then the function is increasing on ($\mathrm{a} ; \mathrm{b}$).
2. If $f^{\prime}(x)<0$ on the interval (a, b), then the function is decreasing on (as).
3. If $f^{\prime \prime}(x)<0$ on the interval (a, b), then the function is concave dốwn on (a, b).
4. If $f^{\prime \prime}(x)>0$ on the interval (abb), then the function is concave up on (abb).

A critical point is defined as a point on the graph where the derivative is either equal to zero or does not exist.

If $f^{\prime}(x)$ changes from positive to negative around a critical point c , then there is a relative maximum point at $\mathrm{x}=\mathrm{c}$.

$$
(10 \mathrm{cat})
$$

If $f^{\prime}(x)$ changes from negative to positive around a critical point c , then there is a relative minimum point at $x=c$.

$$
(10 c i 1):
$$

A point of inflection is a point on the graph where either $f^{\prime \prime}(x)=0$ or does not exist, and there is a change of concavity at that point.
Pis concave up al apt p if there is an interval around p so that the curve $(f(x)$) lies above the tanguntlineat?

f is wave down at a pt P if there is
arinterval around p so that the cire lies below the tangent line at P

The figure above shows the graph of the derivative of a continuous function f for $0 \leq x \leq 4$.
(a) $\binom{\text { For }}{12}^{\text {what value }} \cup(3,4)^{\text {of } x}$ is f increasing? Justify your answer.
(b) For what values of x does f have its relative minimum value? Justify your answer. $x=3 \mathrm{blc} f^{\prime}$ changs sigh from - to t
(c) For what values of x does f have its relative maximum value? Justify your answer. $x=2 \mathrm{bl} \mathrm{c}^{\prime}$ chanes sign form + b-
(d) If $f(1)=1$, use your ansers to (a), (b), and (c) to sketch the graph of f for $1 \leq x \leq 4$.

