likewise

CONCLUSIONS ABOUT FUNCTIONS FROM THEIR DERIVATIVES

1. If $f^{\prime}(x)>0$ on the interval $(a ; b)$, then the function is increasing on $(\mathrm{a} ; \mathrm{b})$.
2. If $f^{\prime}(x)<0$ on the interval (a, b), then the function is decreasing on (abb).
3. If $f^{\prime \prime}(x)<0$ on the interval (a, b), then the function is concave down on (a, b).
4. If $f^{\prime \prime}(x)>0$ on the interval (a, b), then the function is concave up on (abb).

A critical point is defined as a point on the graph where the derivative is either equal to zero or does not exist.

If $f^{\prime}(x)$ changes from positive to negative around a critical point c , then there is a relative maximum point at $x=c$.
If $f^{\prime}(x)$ changes from negative to positive around a critical point c , then there is a relative minimum point at $\mathrm{x}=\mathrm{c}$.

A point of inflection is a point on the graph where either $f^{\prime \prime}(x)=0$ or does not exist, and there is a change of concavity at that point.

Concave up

Concave down

f is concave up at b if there san interval anuund b so that the curve lies above the tangent line at b
f is concave down at b if there is an interval anuuna b so that the curve lies below the tangent line at 6

Name: \qquad Date: \qquad
AP Calculus AB Using Graphs of Derivatives
1.

The graphs (i), (ii), and (iii) given below are the graphs of a function f and its first two derivatives f^{\prime} and $f^{\prime \prime}$ (though not necessarily in that order) Identify which of these graphs is the graph of f_{n} which is that of f^{\prime} and which is that of $f^{\prime \prime}$. Justify your answer.

2.

The graph below is the graph of the derivative of a function f. Use this graph to answer the following questions about. f on the interval $(0,10)$. In each case be sure to justify your answer.

a. On what subinterval(s) is f increasing? $(2,6) \cup(8,10) b / c f^{\prime}$ is θ in those intervals.
b. On what subinterval(s) is f decreasing? $(0,2) \cup(6,8)$ bIc f^{\prime} is θ in those intervals
c. Find the x-coordinates of all relative minima of f.
\cap d. Find the x-coordinates of at relative maxima of $f=2,8$
e. On what subinterval(s) is f concave to \bar{f} ? $x=6$
f. On what $f_{\text {fubinterval }}(\mathrm{s})$ is f concave down? $\left.\mathrm{U}^{\prime \prime}, 9\right)$
g. Find the $f^{\prime \prime}$-coordinates of all points of inflection

$$
\begin{aligned}
& x=4,7,9
\end{aligned}
$$

3.

 has robe a sharpedqe a wale It cant be a hole

The figure above shows the graph of the derivative of a continuous function f for $0 \leq x \leq 4$.
(a) For what values of x is f increasing? Justify your answer. $(3,4) \cup(0,2) \mathrm{b} / \mathrm{c} f^{1}$ is +
(b) For what values of x does f have its relative minimum value? Justify your answer.
(c) For what values of x does f have its relative maxing s sigh form o to t
(d) If $f(1)=1$, use your answers to (a), (b), and (c) to sketch the graph of f for $1 \leq x$

$\lambda \downarrow>\quad f$

Homework 11-29
Match the graphs of the functions shown in (a)-(f) with the graphs of their derivatives in (A)-(F).
(a)

(d)

(D)

(b)

(c)
 B
(e)

(B)

(C)
(f)

(E)

(F)

(c)

(1) Let the graph in (d) be that of $y=h(x)$.

Which of the others is the graph of $y=h^{\prime}(x)$? $K(x)$
(2) Which is the graph of $y=f^{\prime}(x)$? $h(x)$
(3) Which is the graph of $y=g^{\prime}(x)$? $f(x)$
(4) Which is the graph of $y=g^{\prime \prime}(x)$? $h(x)$
(5) Which is the graph of $y=g^{\prime \prime \prime}(x)$? $K(x)$

