\qquad
AP Calculus AB: Analyzing Graphs
Date: \qquad
Ms. Loughran
Do Now: 1985 AB 6
1985 AB 6

Note: This is the graph of the derivative of f, not the graph of f.

The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of the function f is the set of all x such that $-3 \leqq x \leqq 3$.
(a) For what values of $x,-3<x<3$, does f have a relative maximum? A relative minimum? Justify your answer.
(b) For what values of x is the graph of f concave up? Justify your answer.
(c) Use the information found in parts (a) and (b) and the fact that $f(-3)=0$ to sketch a possible graph of f on the axes provided below.
(a) At $x=-2$ there is a rel. max bbc f^{\prime} goes from + to - at $x=-2$. At $x=0$ there a rel mun bile f^{\prime} goes from - to + at $x=0$ (b) $(-1,1)$ and $(2,3)$ bloc f^{\prime} is increasing over those intervals.

1989 AB 5

Note: This is the graph of the derivative of f, not the graph of f.
The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leqq x \leqq 10$,
(a) For what values of x does the graph of f have a horizontal tangent? $x=-7,-1,8$
(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer. $X=-1,8$ b/c f^{\prime} changes sigh for + to -
(c) For what values of x is the graph of f concave downward?

2000 AB 3

The figure above shows the graph of f^{\prime}, the derivative of the function f, for $-7 \leq x \leq 7$. The graph of f^{\prime} has horizontal tangent lines at $x=-3, x=2$, and $x=5$, and a vertical tangent line at $x=3$.
(a) Find all values of x, for $-7<x<7$, at which f attains a relative minimum. Justify your answer.
(b) Find all values of x, for $-7<x<7$, at which f attains a relative maximum. Justify your answer.
(c) Find all values of x, for $-7<x<7$, at which $f^{\prime \prime}(x)<0$.
(a) At what value of x, for $-7 \leq x \leq 7$, does f attain its absolute maximum? Justify your answer.
a) $x=-1$ blc f'geesfrom - to + b) $x=-5$ b/c figoes from + to c) $f^{\prime \prime}(x)<0$ means the graphoff is concave down. $(2,5), x \neq 3$ $\left(x \neq 3\right.$ b)e since f^{\prime} has a vertical tan line at $x=3$ there is a p^{+}. of nondifferentiability

Note: This is the graph of the derivative of f, not the graph of f.
The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-3<x<5$.
(a) For what values of x does f have a relative maximum? Why?
(b) For what values of x does f have a relative minimum? Why?
(c) On what intervals is the graph of f concave upward? Use f^{\prime} to justify your answer.
(d) Suppose that $f(1)=0$. In the $x y$-plane provided, draw a sketch that shows the general shape of 'the graph of the function f on the open interval $0<x<2$.
a) f has a relative maximum when f^{\prime} changes from + to - so at $x=-2$.
b) f has a relative minimum when f^{\prime} changes from - to $+S D$ at $x=4$. c) f is cu when $f^{\prime \prime}$ is \oplus $f^{\prime \prime}$ is \oplus when f^{\prime} is \uparrow so $(-1,1)$ and $(3,5)$

1979 AB 3, BC 3
Find the maximum volume of a box that can be made by cutting out squares from the corners of an 8 -inch by 15 -inch rectangular sheet of cardboard and folding up the sides. Justify your answer.

Review Book Question

The graph of the derivative of f is shown in the figure.
(a) Suppose that $f(3)=1$. Find an equation of the line tangent to the graph of f at the point $(3,1)$.
(b) Where does f have a local minimum? Explain briefly.
(c) Estimate $f^{\prime \prime}(2)$.

(d) Where does f have an inflection point? Explain briefly.
(e) Where does f achieve its maximum on the interval $[1,4]$?

Homework 12-06

Name: \qquad Date: \qquad AP Calc AB : Testing for relative extrema and points of inflection homework

1. Use the graph of the equation $y=f(x)$ in the accompanying diagram to find the signs of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the points A, B, and C.

A - + concave up
$B+=\}$ consavidown
$C-1$

2. Use the graph of $y=f^{\prime}(x)$ in the accompanying figure to replace the question marks with $<,=$, or $>$, as appropriate. Explain your reasoning.

3. In each part, use the graph of $y=f(x)$ in the accompanying figure to find the requested information.
(a) Find the intervals on which f is increasing.
(b) Find the intervals on which f is decreasing.
(c) Find the open intervals on which f is concave up.
(d) Find the open intervals on which f is concave down. $(2,3),(5,7)$
(e) Find all values of x at which f has an inflection point.
(e) Find all values of x at which f has an inflection point.

For questions 4-6,
(a) Find the intervals on which f is increasing. $\} f^{\prime}$
(b) Find the intervals on which f is decreasing.
(c) Find the open intervals on which f is concave up.
(d) Find the open intervals on which f is concave down.
(e) Find all values of x at which f has an inflection point
(f) Find the x values of any relative minimums.
(g) Find the x values of any relative maximums. $\int f^{\prime}$
4. $f(x)=x^{2}-5 x+6$
5. $f(x)=3 x^{4}-4 x^{3}$
6. $f(x)=\frac{x^{2}}{x^{2}+2}$
(4)

$$
\begin{aligned}
& f(x)=x^{2}-5 x+6 \\
& f^{\prime}(x)=2 x-5 \\
& f^{\prime \prime}(x)=2
\end{aligned}
$$

$$
f^{\prime}(x)=0,\{x=5 / 2
$$

rel min

(8) $\left(f(x)\right.$ has rel men b/e $f^{\prime}(x)$ choneston -
(a) $(5 / 2, \infty)$
(c) coneare $\uparrow(-\infty, \infty)$
6) $(-\infty, 5 / 2)$
${ }^{(d)}$ none
(5)

$$
\begin{aligned}
& f(x)=3 x^{4}-4 x^{3} \\
& f^{\prime \prime}(x)=12 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=36 x^{2}-24 x \\
& 12 x^{3}-12 x^{2}=0 \\
& 12 x^{2}(x-1)=0 \\
& x=0 \mid x=1
\end{aligned}
$$

$$
\begin{aligned}
& 36 x^{2}-24 x=0 \\
& 12 x(3 x-2)=0 \\
& x=0 \mid \quad x=2 / 3
\end{aligned}
$$

$f^{\prime}(x)$

(f)/Since $f^{\prime}(x)$ goes foom - to $+f(x)$ hes a) rel. min at $x=1$.
(g) none
(a) inc. $(1, \infty)$
(b) dec. $(-\infty, 1)$
(c) $(-\infty, 0) \cup(2 / 3, \infty)$
(d) $(0,2 / 3)$
(e) $x=0, x=2 / 3$
(5)

$$
\left.\begin{array}{l}
f(x)=\frac{x^{2}}{x^{2}+2} \\
f^{\prime}(x)=\frac{\left(x^{2}+2\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+2\right)^{2}} \\
f^{\prime}(x)=\frac{2 x^{3}+4 x-2 x^{3}}{\left(x^{2}+2\right)^{2}}=\frac{4 x}{\left(x^{2}+2\right)^{2}} \\
16 x^{2}\left(x^{2}+2\right)(9
\end{array} f^{\prime \prime}(x)=\frac{\left(x^{2}+2\right)^{2} \cdot 4-(4 x) 2\left(x^{2}+2\right) \cdot 2 x}{\left(\left(x^{2}+2\right)^{2}\right)^{2}}=\frac{4\left(x^{2}+2\right)^{2}-16 x^{2}\left(x^{2}+2\right)}{(x+2)^{4}}=\frac{\left(x^{2}+2\right)\left(4\left(x^{2}+2\right)-16 x^{2}\right.}{\left(x^{2}+2\right)^{43}}\right)
$$

$$
\begin{aligned}
& \frac{4\left(x^{2}+2\right)-16 x^{2}}{\left(x^{2}+2\right)^{3}}=\frac{4 x^{2}+8-16 x^{2}}{\left(x^{2}+2\right)^{3}}=\frac{-12 x^{2}+8}{\left(x^{2}+2\right)^{3}} \\
& f^{\prime}(x)=0
\end{aligned}
$$

$$
\frac{4 x}{\left(x^{2}+2\right)^{2}}=0
$$

$$
4 x=0
$$

$$
x=0
$$

$$
\frac{-12 x^{2}+8}{\left(x^{2}+2\right)^{3}}=0 \quad \stackrel{f^{\prime \prime}}{\left(x^{2}+2\right)^{3} \neq 0} \stackrel{f-c D}{-\sqrt{2 / 3} \quad c v+\sqrt{2 / 3}} \mathrm{CD}_{5}
$$

$$
-12 x^{2}+8=0
$$

$x^{2}+2 \neq 0$
(6) (a) inc. $(0, \infty)$

$$
-12 x^{2}=-8
$$

(b) dec. $(-\infty, 0)$

$$
12 x^{2}=8
$$

$$
x^{2}=8 / 12=2 / 3
$$

(c) con. $\uparrow(-\sqrt{2 / 3}, \sqrt{2 / 3})$

$$
x= \pm \sqrt{2 / 3} \approx \pm .81649 \ldots
$$

(d) an. $\downarrow(-\infty,-\sqrt{2 / 3}) \cup(\sqrt{9 / 3}, \infty)$
(e) $x= \pm \sqrt{2 / 3}$
(f) $x=0$ is a relman ble $f^{\prime}(x) \cdots$ (g) none
7. Use the graph of $y=f^{\prime \prime}(x)$ in the accompanying figure to determine the x-coordinates of all inflection points of f. Explain your reasoning.

$$
x=1,-1,2,0
$$

