Do Now:

Determine if each of the following statements is true or false. If you decide a statement is false, provide a counterexample to show why it is false and then rewrite the statement in order to make it true. Unless otherwise specified, assume each function is defined and continuous for all real numbers.

1. A critical point (or critical number) of a function f of a variable x is the x-coordinate of a relative maximum or minimum value of the function.
2. A continuous function on a closed interval can have only one maximum value. True
3. If $f^{\prime \prime}(x)$ is always positive, then the function f must have a relative minimum value. False
4. If a function f has a local minimum value at $x=c$, then $f^{\prime}(c)=0$. False
(1) $f(x)=x^{3}$ has a critical pt at $x=0$, but there is no rel min or max at $x=0$.
(2) A maximum can occur at several X values but then is only
one absolute maximum on a du aced interval (not talking about real. maxs)
(3) $f(x)=e^{x}$

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then theremust be a rel mun at c.
(4) $f(x)=|x|$

her a red manat $x=0$
but $f^{\prime}(0) \neq 0$

$$
f^{\prime}(0) \text { is undefined }
$$

Connecting f^{6} and f " with the graph of f

Homework 12-11
Name: \qquad Ky

Date: \qquad
AP Call AB: Second Derivative Test Homework
Ms. Loughran

For 1 and 2 , use the graphs of f^{\prime} shown to estimate all values of x at which f has
(a) relative maxima $\cap f_{1}^{\prime}+-$
(b) relative minima $f^{\prime}-+$
(c) inflection points $f^{\prime} \uparrow \downarrow$ or $\downarrow \tau$
1.

$$
\begin{array}{ll}
a & x=0 \\
b & x=2 \\
c & x=1,3
\end{array}
$$

2.

$$
\begin{aligned}
& a \quad x=5 \\
& b x=1 \\
& c x=-1,0,3
\end{aligned}
$$

For 3 and 4, find the relative extrema using both the first and second derivative tests.

$$
1+0-4
$$

3. $f(x)=1-4 x-x^{2}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-2 \\
& f^{\prime \prime}(-2)<0 \cap
\end{aligned}
$$

rel max of 5

$$
\begin{aligned}
& f(x)=-4-2 x \\
& -4-2 x=0 \\
& -2 x=4
\end{aligned}
$$

$$
a+x=-2
$$

Score Devalue Test

$$
\begin{array}{ll}
\sin 2 x=0 & \\
2 x=0, \pi, 2 \pi, 3 \pi & \\
2 x=k \pi & k \in z \\
x=\frac{k}{2} \pi & k \in z
\end{array}
$$

$$
f^{\prime \prime}=2 \cos (\partial x) \text { at } \pi / 2 \mathrm{rel} \max ^{\frac{5 \pi}{2}} \text { of } 1
$$

a π reline! 0
at $3 \pi / 2$ sal mix of 1

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 \cos 248 x^{24} \cos ^{\text {cot }} \text { of } 1 \\
& \text { (1) } \left.\frac{\pi}{2}\right)<0 \text { admin } f^{\prime \prime}(y)=2 \sin x \cos x=\sin 2 x
\end{aligned}
$$

For 5-8, use any method to find the relative extrema of the function f.
5. $f(x)=x^{3}+5 x-2$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+5 \text { always t } \\
3 x^{2}+5=0 \\
3 x^{2}=-5 \\
x^{2}=-5 / 3 \text { imaging }
\end{gathered}
$$

Since $f^{\prime}(x)$ is always >0 there are no rel. extrema fisc alwoust
6. f

$$
\begin{aligned}
& f(x)=x(x-1)^{2} \\
& f^{\prime}(x)=(x-1)^{2}+x \cdot 2(x-1)=(x-1)^{2}+2 x(x-1)=(x-1)(x-1+2 x) \\
& (x-1)(3 x-1) \\
& x=1, \frac{1}{3}
\end{aligned}
$$

$\frac{1}{3}\left(-\frac{2}{3}\right)^{2}$

$$
\left.f^{\prime \prime}(x)=3 x-1 x-1\right) 3=3 x-1+3 x-3=6 x-4
$$

$f^{\prime \prime}(1)>0$ so pas a ret minot o at $x=1$ Second $f^{\prime \prime}\left(\frac{1}{3}\right)<4$ so Chis ret max: $\frac{y}{27}$ at $x-\frac{1}{3}$ Denvatue
7. $f(x)=\frac{x^{2}}{x^{2}+1}$

$$
\begin{aligned}
& \text { 7. } f(x)=\frac{\frac{1}{x^{2}+1}}{\left.f^{\prime}(x)=\frac{2 x}{2 x}+1\right)-2 x\left(x^{2}\right)} \frac{2 x^{3}+2 x-2 x^{3}}{\left(x^{2}+1\right)^{2}}=\frac{2 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
x=0
$$

So has a rel minot 0

$$
\text { at } x=0
$$

First Denvatue test
8. $f(x)=\frac{+}{\ln \left(1+x^{2}\right)}$

$$
f^{\prime}(x)=\frac{1}{1+x^{2}} \cdot 2 x=\frac{2 x}{1+x^{2}+} \quad x=0
$$

So f has a rel men of 0 at $x=0$

