Name: \qquad Date: \qquad

AP Calculus AB Analysis of Functions

How to classify maxima and minima.

Name:
AP Calculus AB: Extreme Value Theorem

Date: \qquad
Ms. Loughran

Extreme Value Theorem: (EVT)
If a function f is continuous on a CLOSED interval $[a, b]$ then f has both an absolve minimum and an absolute
maximum on the interval.
Let f be a function with domain D that is conhmuos, then $f(c)$ is the: absolve maximum on D if and only if $f(x) \leqslant f(c)$ for all x in D. absolute minimum on D if and only if $f(x) \geqslant f(c)$ for all x (n D

In a closed interval, extreme values occur at critical points or at endpoints. [Candidate Test]

To find extrema on a closed interval:
(1) Find the critical points of f on $[a, b]$
(2) evaluate f at those critical points pts in $[a, b]$
(3) evaluate f at the endpoints
(4) the least of these values is the absolute (global) minimum and the greatest of these values is the absolute (global) maximum
Suppose that f is continuous and has exactly one relative minimum or exactly one relative maximum on an interval I, then that value is the absolute minimum/ absolute maximum on that interval.

For the following, find the extreme values of f and where they occur.

$$
\text { 1. } \begin{array}{r}
f(x)=2 x^{3}-3 x^{2}-36 x \tag{1,5}\\
f^{\prime}(x)=6 x^{2}-6 x-36 \\
6 x^{2}-6 x-36=0 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3,-\chi_{\text {not }}[1,5]
\end{array}
$$

Candidate tests

$$
\begin{aligned}
& f(1)=2-3-36=-37 \\
& f(3)=54-27-108=-81 \\
& f(5)=2(5)^{3}-3(5)^{2}-36(5)=250-75-180=-5
\end{aligned}
$$

abs max: -5 at $x=5$
abs min: -81 at $x=3$
2.

$$
\begin{aligned}
& f(x)=6 x^{\frac{4}{3}}-3 x^{\frac{1}{3}} \\
& f^{\prime}(x)=8 x^{\frac{1}{3}}-x^{-2 / 3} \\
& f^{\prime}(x)=x^{-2 / 3}(8 x-1)=\frac{8 x-1}{x^{2 / 3}}
\end{aligned}
$$

f^{\prime} is 0 or f^{\prime} is not defined
$8 x-1=0$

$$
x=0
$$

$$
x=\frac{1}{8}
$$

$$
\begin{aligned}
& \frac{C T}{f(-1)}=9 \\
& f(0)=0 \\
& f\left(\frac{1}{8}\right)=-\frac{9}{8} \\
& f(1)=3
\end{aligned}
$$

abs max: 9 at $x=-1$
abs min: $\frac{-9}{8}$ at $x=\frac{1}{8}$
3. $f(x)=\ln (x+1)$
$[0,3]$

$$
f^{\prime}(x)=\frac{1}{x+1}
$$

$$
\frac{1}{x+1} \neq 0
$$

no place where $f^{\prime}(x)=0$
4. $f(x)=\sin \left(x+\frac{\pi}{4}\right) \quad\left[0, \frac{7 \pi}{4}\right]$
f^{\prime} is undefined
$x=-1$ so that is a critical pt ignore it ble it's not in $[0,3]$

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \text { abs max }: \ln 4 \\
f(3)=\ln 4 \quad \text { at } x=3
\end{array}
$$

abs min: 0 at $x=0$

$$
\begin{array}{ll}
x & f^{\prime}(x)=\cos \left(x+\frac{\pi}{4}\right) \\
\operatorname{A} \\
\cos \left(x+\frac{\pi}{4}\right)=0 \\
A=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \ldots \\
x+\frac{\pi}{4}=\frac{\pi}{2} & x+\frac{\pi}{4}=\frac{3 \pi}{2} \\
x=\frac{\pi}{4} \quad x=\frac{5 \pi}{4} \quad x
\end{array}
$$

$$
\begin{aligned}
& \frac{C T}{2} \\
& f(0)=\frac{\sqrt{2}}{2} \\
& f\left(\frac{\pi}{4}\right)=1 \\
& f\left(\frac{\pi}{4}\right)=-1 \\
& f\left(\frac{\pi I}{4}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& x+\frac{\pi}{4}=\frac{5 \pi}{2} \\
& x=\frac{9 \pi}{9} \text { now In and imbibe }
\end{aligned}
$$

abs mun: -1 at $x=\frac{5 \pi}{4}$
abs mas x: 1 of $x=\frac{\pi}{4}$

Classwork/Homework 12-13

Name: \qquad
AP Calculus Practice

$$
\begin{array}{lr}
y^{\prime}=x^{2}+10 x & \\
y^{\prime \prime}=2 x+10 & 2 x+10=0 \\
x=-5
\end{array}
$$

* Unless noted with a "*" a calculator is NOT ALLOWED.

1) What is the x-coordinate of the point of inflection on the graph $y=\frac{1}{3} x^{3}+5 x^{2}+24$?

A. 5
B. 0
C. $-\frac{10}{3}$
D. -5
E. -10
2) A particle moves along the x-axis so that its position at time t is given by: $x(t)=t^{2}-6 t+5$. For what value of t is the velocity of the particle zero?
A. 1
B. 2
C. 3
D. 4
E. 5
3) If $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}$ then the graph of f has inflection points when $\mathrm{x}=$
A. -1 only
B. 2 only
C. -1 and 0 only
D. -1 and 2 only
E. $-1,0$, and 2 only
4) The function f is given by $f(x)=x^{4}+x^{2}-2$. On which of the following intervals is f increasing?
A. $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
B. $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $(0, \infty)$
D. $(-\infty, 0)$
E. $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$
5)* The first derivative of the function f is given by $f^{\prime}(x)=\frac{\cos ^{2} x}{x}-\frac{1}{5}$. How many critical values does f have on the open interval $(0,10)$?
A. One
B. Three
C. Four
D. Five
E. Seven
5) Let f be the function with derivative given by $f^{\prime}(x)=x^{2}-\frac{2}{x}$.

On which of the following intervals is f decreasing?
A. $(-\infty,-1)$ only
B. $(-\infty, 0)$
C. $(-1,0)$ only
D. $(0, \sqrt[3]{2})$
E. $(\sqrt[3]{2}, 0)$
7) Let f be the function given by $f(x)=2 x e^{x}$ The graph of f is concave down when
A. $x<-2$
B. $x>-2$
C. $x<-1$
 $f^{\prime}(x)=2 x e^{x}$
$f^{\prime}(x)=2 x e^{x}+2 e^{x}$
E. $x<f^{\prime}(x)=2 l^{x}(x+1)$
$f^{\prime \prime}(x)=2 l^{x}(1)+(x+1) d l^{x}$

x	-4	-3	-2	-1	0	1	2	3	4
$g^{\prime}(x)$	2	3	0	-3	-2	-1	0	3	2

8)

The derivative g 'of a function g is continuous and has exactly two zeros. Selected values of $2 \neq 0 \mid x=-2$ are given in the table above. If the domain of g is the set of all real number, then g is decreasing on which of the following intervals?
A. $-2 \leq x \leq 2$ only
B. $-1 \leq x \leq 1$ only
C. $x \geq-2$
D. $x \geq 2$ only \quad E. $x \leq-2$ or $x \geq 2$
$g(x)$ 刀 $\quad g_{1} C U g^{\prime}>$
$m=6$
9) Let g be a twice-differentiable function with $g^{\prime}(x)>0$ and $g^{\prime \prime}(x)>0$ for all real numbers x, such that $g(4)=12$ and $g(5)=18$. Of the following, which is a possible value for $g(6)$?
 $v(t)=3+4.1 \cos (0.9 t)$. What is the acceleration of the particle at time $t=4$?
A. -2.016
B. -0.677
C. 1.633
D. 1.814
E.
2.978
11)* Let f be the function with derivative given by $f^{\prime}(x)=\sin \left(x^{2}+1\right)$. How many relative extrema does f have on the interval $2<x<4$?
A. One
B. Two
C. Three
D. Four
E. Five
12)* The function f has first derivative given by $f^{\prime}(x)=\frac{\sqrt{x}}{1+x+x^{3}}$. What is the x-coordinate of the inflection point of the graph of f ?
A. 1.008
B. 0.473
C. 0
D. -0.278
E. the graph has no inflection point
$f \mu$

13) For all x in the closed interval $[2,5]$, the function f has a positive first derivative and a negative second derivative. Which of the following could be a table of values for f ?
A.
\(\left.\begin{array}{|l|l|}\hline x \& f(x)

\hline 2 \& 7

\hline 3 \& 9

\hline 4 \& 12

\hline 5 \& 16

\hline\end{array}\right\}\)| |
| :--- |
| $m=2$ |
| $m=3$ |
| $m=4$ |

D	
x	$f(x)$
2	16
3	14
4	11
5	7

E	
x	$f(x)$
2	16
3	13
4	10
5	7

