Date: _____

Name:

AP Calculus AB Analysis of Functions

In Exercises 1-4, find the first derivative of the function. $f'(x) = \frac{1}{2}(4-x)^{-3} - 1 = f'(x) = -1(9-x^{2})^{-3} - 2x$ $f(x) = \sqrt{4-x}$ 254-x 2. f(x) =-2X د (م) 3. $g(x) = \frac{2}{q} \frac{(4-x)^{-3}}{q} \frac{2}{(x)}$ $g(x) = \frac{2}{q} \frac{(4-x)^{-3}}{q} \frac{2}{(x)}$ $g(x) = \frac{2}{q} \frac{(1-x)^{-3}}{q} \frac{2}{(x)}$ $g(x) = \frac{2}{q} \frac{2}{(x)}$ $g(x) = \frac{2}{(x)}$ g(x) =2e^{2x} 6. 5. f'(x)f'(x)x x 0 0 a В a C 0 b 0 b -5 с 5 с 8. 7. f'(x)f'(x)x x A does not exist does not exist a а D does not exist 0 b b -2 -1.7 с с b Ь a C a с (a) (b)

a b (c) C

bc

:

How to classify maxima and minima.

Date: Ms. Loughran

In a closed interval, extreme values occur at critical points or at endpoints. [Candidate Test]

.

To find extrema on a closed interval:

Suppose that f is continuous and has exactly one relative minimum or exactly one relative maximum on an interval *I*, then that value is the absolute minimum/ absolute maximum on that interval.

For the following, find the extreme values of *f* and where they occur.

1.
$$f(x) = 2x^{3} - 3x^{2} - 36x$$
 [1,5]
 $\int (x) = (bx^{2} - bx - 3b)$
 $(bx^{2} - bx - 3b) = 0$
 $(x^{2} - x - b) = 0$
 $(x - 3)(x + 2) = 0$
 $x = 3, -3$ moly in
 $[1,5]$

candidate fests

$$f(1) = 2 - 3 - 3b = -37$$

$$f(3) = 54 - 27 - 108 = -81$$

$$f(5) = 2(5)^{3} - 3(5)^{2} - 3b(5) = 250 - 75 - 180 = -5$$

abs max: -5 at x = 5
abs mun : -81 at x = 3

2.
$$f(x) = 6x^{\frac{4}{3}} - 3x^{\frac{1}{3}} [-1,1]$$

$$f'(x) = 8x^{\frac{1}{3}} - x^{-2/3} [-1,1]$$

$$f'(x) = 8x^{\frac{1}{3}} - x^{-2/3} [-1,1]$$

$$f(-1) = 9$$

$$f(-1) = 9$$

$$f(-1) = 9$$

$$f(-1) = 9$$

$$f(0) = 0$$

$$f(0) = 0$$

$$f(-1) = 9$$

$$f(0) = 0$$

$$f(-1) = 9$$

$$f(0) = 0$$

$$f(-1) = -9$$

$$f(-1) = -9$$

abs max: 9 at x = -1abs may: $-\frac{9}{8}$ at $x = \frac{1}{8}$

3.
$$f(x) = \ln(x+1)$$
 [0,3]
 $f'(x) = \frac{1}{x+1}$
 $\frac{1}{x+1} \neq 0$
No place where $f'(x) = 0$

$$f' \text{ is undefined}$$

$$X = -1 \text{ so that is a cribical pt}$$

$$ignore it bk its not in [0,3]$$

$$f(o) = |n| = 0$$

$$f(3) = |n| 4 \qquad \text{abs max : ln4}$$

$$at x = 3$$

$$abs min : 0$$

$$at x = 0$$

Classwork/Homework 12-13

4) The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the following intervals is f increasing?

A.
$$\left(-\frac{1}{\sqrt{2}},\infty\right)$$
 B. $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ C. $(0,\infty)$ D. $(-\infty,0)$ E. $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$

5)* The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} - \frac{1}{5}$. How many critical values does f have on the open interval (0, 10)?

A. One B. Three C. Four D. Five E. Seven

6) Let f be the function with derivative given by $f'(x) = x^2 - \frac{2}{x}$. On which of the following intervals is f decreasing?

A. $(-\infty, -1)$ only B. $(-\infty, 0)$ C. (-1, 0) only D. $(0, \sqrt[3]{2})$ E. $(\sqrt[3]{2}, 0)$

7) Let f be the function given by $f(x) = 2xe^x$ The graph of f is concave down when

	A	. x < -	-2	B. 2	x > -2	C. <i>x</i> <	-1	f	. x>-1	\rightarrow f	(x) = J(x(1) + (x+1))
x		-4	-3	-2	-1	0	1	2	3	4	$["() - j_{x}^{*}(1 + x + i)]$
g	'(x)	2	3	0	-3	-2	-1	0	3	2	T (x)-dc (11 ~ ·
8)	 T1	he deriv		f a functi	on g is co	ntinuous	and has ex	vactly two	zeros Se	ected va	$\int f''(x) = 0$ $\int \ell''(x+2) = 0$ $\int \ell''(x+2) = 0$ $\int \ell''(x+2) = 0$

The derivative g'of a function g is continuous and has exactly two zeros. Selected values of $g \neq 0$ x = -2 are given in the table above. If the domain of g is the set of all real number, then g is decreasing on which of the following intervals?

A. $-2 \le x \le 2$ only B. $-1 \le x \le 1$ only C. $x \ge -2$ D. $x \ge 2$ only E. $x \le -2$ or $x \ge 2$ g(x) = g(x) = g(x) = g(x) G. $x \ge 2$ only (x) < 0 for all real numbers x,

21

9) Let g be a twice-differentiable function with g'(x) > 0 and g''(x) > 0 for all real numbers x, such that g(4) = 12 and g(5) = 18. Of the following, which is a possible value for g(6)?

10)* A particle moves along the x-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = 3 + 4.1\cos(0.9t)$. What is the acceleration of the particle at time t = 4?

```
A. –2.016 B. –0.677 C. 1.633 D. 1.814 E. 2.978
```

11)* Let f be the function with derivative given by $f'(x) = \sin(x^2 + 1)$. How many relative extrema does f have on the interval 2 < x < 4?

A. One B. Two C. Three D. Four E. Five

- 12)* The function f has first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the inflection point of the graph of f?
 - A. 1.008 B. 0.473 C. 0 D. -0.278 E. the graph has no inflection point f'
- 13) For all x in the closed interval [2,5], the function f has a positive first derivative and a negative second derivative. Which of the following could be a table of values for f?

	A.	
x	f(x)	
2	7	3 M= 2
3	9	4
4	12	$\int m = 3$
5	16	Sm=4

	B.	
x	f(x)	
2	7	2 m=4
3	11	1
4	14	3
5	16	2

C.				
x	f(x)			
2	16			
3	12			
4	9			
5	7			

	D
x	f(x)
2	16
3	14
4	11
5	7

	E
x	f(x)
2	16
3	13
4	10
5	7