Name:
PCH: Applications of Matrix Multiplication

Date: \qquad Ms. Loughran

Do Now:

1. In a certain city the proportion of voters in each age group who are registered as Democrats, Republicans, or Independents are given by the following matrix.

	Age		
	$18-30$	$31-50$	Over 50
Remocrat			
Republican			

0.50 \& 0.35 \& 0.25 \\
Independent\end{array} \quad $$
\begin{array}{l}0.20 \\
0.05 \\
\hline\end{array}
$$\right.\)

The next matrix gives the distribution, by age and sex, of the voting population of this city.

For this problem, let's make the assumption that within each age group, political preference is not related to gender.
(a) Calculate the product $A B$.
(b) How many males are registered as Democrats in this city?
(c) How many females are registered as Repubicans?

Classwork (taken from textbook)
49. Fast-Food Sales A small fast-food chain with restaurants in Santa Monica, Long Beach, and Anaheim sells only hamburgers, hot dogs, and milk shakes. On a certain day, sales were distributed according to the following matrix.

	Number of items sold		
	Santa Monica	Long Beach	Anaheim
Hamburgers	[4000	1000	35007
Hot dogs	3 400	300	200
Milk shakes	[700	500	9000

The price of each item is given by the following matrix.

Hamburger	Hot dog	Milk Shake
$[\$ 0.90$	$\$ 0.80$	$\$ 1.10]=B$

(a) Calculate the product $B A$.
(b) Interpret the entries in the product matrix $B A$.
50. Car-Manufacturing Profits A specialty-car manufacturer has plants in Auburn, Biloxi, and Chattanooga. Three models are produced, with daily production given in the following matrix.

	Cars produced each day		
	Model K	Model R	Model W
Auburn	[12	10	07
Biloxi	4	4	20 =
Chattanooga	8	9	12

Because of a wage increase, February profits are less than January profits. The profit per car is tabulated by model in the following matrix.

	January	
	February	
Model K	$\left[\begin{array}{lr}\$ 1000 & \$ 500 \\ \text { Model R } \\ \text { Model W } & \$ 2000\end{array} \$ \$ 1200\right.$	
$\$ 1500$	$\$ 1000$	

(a) Calculate $A B$.
(b) Assuming all cars produced were sold, what was the daily profit in January from the Biloxi plant?
(c) What was the total daily profit (from all three plants) in February?

51. Canning Tomato Products Jacger Foods produces

tomato sauce and tomato paste, canned in small, medium, large, and giant sized tins. The matrix A gives the size (in ounces) of each container.

	Small	Medium	Large	Giant
Ounces	$[6$	10	14	$28]=A$

The matrix B tabulates one day's production of tomato sauce and tomato paste.

	Cans of sauce	Cans of paste
Small		
Medium		
Large		
Giant		

3000 \& 1500

2500 \& 1000

1000 \& 500\end{array}\right]=B\)
(a) Calculate the product of $A B$.
(b) Interpret the entries in the product matrix $A B$.
52. Produce Sales A farmer's three children, Amy, Beth, and Chad, run three roadside produce stands during the summer months. One weekend they all sell watermelons, yellow squash, and tomatoes. The matrices A and B tabulate the number of pounds of each product sold by each sibling on Saturday and Sunday.

	Saturday		
Amy Beth Chad	$\left[\begin{array}{ccc}120 & 50 & 60 \\ 40 & 25 & 30 \\ 60 & 30 & 20\end{array}\right]=A$		
	Squash		
	Mematoes		
Amy	$\left[\begin{array}{ccc}100 & 60 & 30 \\ 35 & 20 & 20 \\ 60 & 25 & 30\end{array}\right]=B$		

The matrix C gives the price per pound (in dollars) for each type of produce that they sell.

> Price per pound
$\underset{\text { Tomatoes }}{\underset{\text { Squash }}{\text { Melons }}} \quad\left[\begin{array}{l}0.10 \\ 0.50 \\ 1.00\end{array}\right]=C$

Perform the following matrix operations, and interpret the entries in each result.
(a) $A C$
(b) $B C$
(c) $A+B$
(d) $(A+B) C$

