Name:			<u> </u>	

AP Calculus AB: Area Between 2 Curves

Date: ____ Ms. Loughran

Remember:

If a function f is continuous on [a,b] and if $f(x) \ge 0$ for all x in [a,b] then the area under the curve y = f(x) over the interval [a,b] is defined by:

$$Area = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

Which can be rewritten as: $Area = \int_{a}^{b} f(x)dx$

What if the region is not bounded by the *x*-axis? What if the area is between 2 curves?

Vertical Strip:

1. Find the area of the region bounded by y = x + 6 and $y = x^2$.

2. Find the area of the region bounded by $y = \sin x$ and $y = \cos x$ from x = 0 to $x = \frac{\pi}{2}$.

4. Find the area of the region enclosed by
$$y^2 = 4x$$
 and $y = 2x - 4$.

Horizontal Strip:

5. Find the area of the region enclosed by $y^2 = x + 2$ and y = x.

6. Find a vertical line x = k that divides the area enclosed by $x = \sqrt{y}$, x = 2 and y = 0 into 2 equal parts.