Name:
Date: $\qquad$
AP Calc: Relationship Between Area under the curve and the Definite Integral

Do Now:

1. $\int_{0}^{1} x^{2} d x=$
2. $\int_{-\pi}^{\frac{\pi}{3}} \sin x d x=$

If a function $f$ is continuous on $[a, b]$ and if $f(x) \geq 0$ for all $x$ in $[a, b]$ then the area under the curve $y=f(x)$ over the interval $[a, b]$ is defined by:

$$
\text { Area }=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

Which can be rewritten as: $\quad$ Area $=\int_{a}^{b} f(x) d x$

Recall the FTC Part I:

Corollary:

Let's find the total area bounded by the curve $y=\sin x$ and the $x$-axis from $\left[-\pi, \frac{\pi}{3}\right]$.

Examples:

1. Find the value of $\int_{-2}^{3} x^{3} d x=$
2. Find the area bounded by $y=x^{3}$ and the $x$-axis from $x=-2$ to $x=3$.
3. Find the value of $\int_{-2}^{2}\left(x^{3}-4 x\right) d x=$
4. Find the area bounded by $y=x^{3}-4 x$ and the $x$-axis from $x=-2$ to $x=2$.

A note about evaluating integrals:
$\int_{-a}^{a}$ odd function $=$
$\int_{-a}^{a}$ even function $=$

