Name:	Date:
AP Calculus: The Definite Integral as an Average	Ms. Loughran

We know how to find the average of n numbers: add them and divide by n. But how do we find the average value of a continuously varying function? Let us consider an example. Suppose C = f(t)is the temperature at time t, measured in hours since midnight, and that we want to calculate the average temperature over a 24-hour period. One way to start would be to average the temperatures at n times, t_1, t_2, \ldots, t_n , during the day.

Average temperature
$$\approx \frac{f(t_1) + f(t_2) + \dots + f(t_n)}{n}$$

The larger we make n, the better the approximation. We can rewrite this expression as a Riemann sum over the interval $0 \le t \le 24$ if we use the fact that $\Delta t = 24/n$, so $n = 24/\Delta t$:

Average temperature
$$\approx \frac{f(t_1) + f(t_2) + \dots + f(t_n)}{24/\Delta t}$$

$$= \frac{f(t_1)\Delta t + f(t_2)\Delta t + \dots + f(t_n)\Delta t}{24}$$

$$= \frac{1}{24} \sum_{i=1}^{n} f(t_i)\Delta t.$$

As $n \to \infty$, the Riemann sum tends towards an integral and also approximates the average temperature better. Thus, in the limit

Average temperature
$$= \lim_{n \to \infty} \frac{1}{24} \sum_{i=1}^{n} f(t_i) \Delta t$$
$$= \frac{1}{24} \int_{0}^{24} f(t) dt.$$

Thus we have found a way of expressing the average temperature in terms of an integral. Generalizing for any function f, we define

Average value of
$$f$$
 from a to b
$$= \frac{1}{b-a} \int_a^b f(x) dx$$

How to Visualize the Average on a Graph

The definition of average value tells us that

(Average value of
$$f$$
) \cdot $(b-a) = \int_a^b f(x) dx$.

Thus, if we interpret the integral as the area under the graph of f, then we can think of the average value of f as the height of the rectangle with the same area that is on the same base, (b-a). (See Figure 3.18.)

Practice

1. Find the average value of $f(x) = x^2$ from x = 2 to x = 4.

2. Find the average value of $f(x) = \sqrt{x}$ from x = 0 to x = 16.

3. Find the average value of $f(x) = e^{2x}$ on the interval [-1,1].

4. Find the average value of $f(x) = \cos x$ from x = 0 to $x = \pi$.

5. Find the average velocity of $v(t) = t^2 - 2$ on the interval [-2,3].