Name:

AP Calculus Practice

* Unless noted with a "*" a calculator is **NOT ALLOWED**.

What is the x-coordinate of the point of inflection on the graph
$$y = \frac{1}{3}x^3 + 5x^2 + 24$$
?

A. 5 B. 0 C. $-\frac{10}{3}$ D. -5 E. -10

2) A particle moves along the x-axis so that its position at time t is given by: $x(t) = t^2 - 6t + 5$. For what value of t is the velocity of the particle zero?

A. 1 B. 2 C. 3 D. 4 E. 5

3) If $f''(x) = x(x+1)(x-2)^2$ then the graph of f has inflection points when x =

A. -1 only B. 2 only C. -1 and 0 only D. -1 and 2 only E. -1, 0, and 2 only

4) The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the following intervals is f increasing?

A.
$$\left(-\frac{1}{\sqrt{2}},\infty\right)$$
 B. $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ C. $(0,\infty)$ D. $(-\infty,0)$ E. $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$

5)* The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} - \frac{1}{5}$. How many critical values does f have on the open interval (0, 10)?

A. One B. Three C. Four D. Five E. Seven

6) Let f be the function with derivative given by $f'(x) = x^2 - \frac{2}{x}$. On which of the following intervals is f decreasing?

A. $(-\infty, -1)$ only B. $(-\infty, 0)$ C. (-1, 0) only D. $(0, \sqrt[3]{2})$ E. $(\sqrt[3]{2}, 0)$

7) Let f be the function given by $f(x) = 2xe^x$ The graph of f is concave down when

A. x < -2 B. x > -2 C. x < -1 D. x > -1 E. x < 0

x	-4	-3	-2	-1	0	1	2	3	4
<i>g</i> '(<i>x</i>)	2	3	0	-3	-2	-1	0	3	2

8)

The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real number, then g is decreasing on which of the following intervals?

A. $-2 \le x \le 2$ only B. $-1 \le x \le 1$ only C. $x \ge -2$ D. $x \ge 2$ only E. $x \le -2$ or $x \ge 2$

- 9) Let g be a twice-differentiable function with g'(x) > 0 and g''(x) > 0 for all real numbers x, such that g(4) = 12 and g(5) = 18. Of the following, which is a possible value for g(6)?
 - A. 15 B. 18 C. 21 D. 24 E. 27
- 10)* A particle moves along the x-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = 3 + 4.1\cos(0.9t)$. What is the acceleration of the particle at time t = 4?

A. –2.016 B. –0.677 C. 1.633 D. 1.814 E. 2.978

11)* Let f be the function with derivative given by
$$f'(x) = \sin(x^2 + 1)$$
.
How many relative extrema does f have on the interval $2 < x < 4$?

A. One B. Two C. Three D. Four E. Five

12)* The function f has first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the inflection point of the graph of f? A. 1.008 B. 0.473 C. 0 D. -0.278 E. the graph has no inflection point

13) For all x in the closed interval [2,5], the function f has a positive first derivative and a negative second derivative. Which of the following could be a table of values for f?

	A.
x	$f(\mathbf{x})$
2	7
3	9
4	12
5	16

	В.
x	f(x)
2	7
3	11
4	14
5	16

	C.
x	f(x)
2	16
3	12
4	9
5	7

	D.
x	f(x)
2	16
3	14
4	11
5	7

	E.
x	f(x)
2	16
3	13
4	10
5	7