Name: ______ PC: Composition of Functions Date:_____ Ms. Loughran

Two functions can be combined to form a new function.

Given: $f(x) = x^2 + 4$ and g(x) = 2x, then the composite function $f \circ g$, read "f following g," can be defined by $[f \circ g](x) = f(g(x))$.

If we want to find f(g(4)), we can go about it two ways:

First way:

Since g(4) = then f(g(4)) = f() =

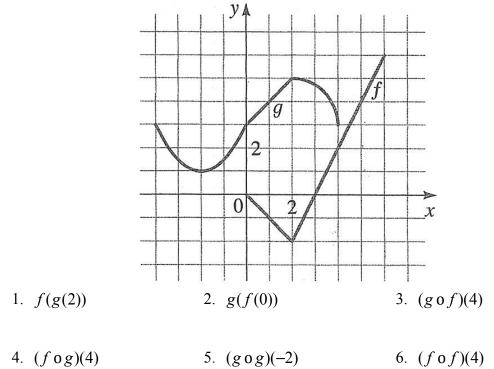
Therefore f(g(4)) =

Second way:

Since g(x) = 2x, then f(g(x)) = f(-)=

Now we can plug 4 into that rule so f(g(4)) =

Example 1: Using the functions given above find: (a) g(f(x))(b) g(f(4))


Notice that $[f \circ g](x) \neq [g \circ f](x)$. Therefore, the operation of composition is not commutative.

Example 2:

Let f(x) = 3x-5 and $g(x) = 2-x^2$. Find:

- (a) $[f \circ g](0)$ (b) g(f(0))
- (c) $[f \circ f](4)$ (d) $[g \circ g](3)$
- (e) f(g(-2)) (f) g(f(x))
- (g) $(f \circ g)(x)$

Practice:

For 1-6, use the given graphs of f and g to evaluate the expression.

7. For each of the following, find the functions $(f \circ g)(x)$ and $(g \circ f)(x)$.

(a)
$$f(x) = 2x+3$$
, $g(x) = 4x-1$ (b) $f(x) = 6x-5$, $g(x) = \frac{x}{2}$

(c)
$$f(x) = x^3 + 2$$
, $g(x) = \sqrt[3]{x}$ (d) $f(x) = x^2$, $g(x) = \sqrt{x-3}$

(e)
$$f(x) = x^2$$
, $g(x) = x - 1$

8. Find f(g(h(x)))

(a)
$$f(x) = x - 1$$
, $g(x) = \sqrt{x}$, $h(x) = x + 1$

(b)
$$f(x) = \frac{1}{x}$$
, $g(x) = x^3$, $h(x) = x^2 + 2$

(c)
$$f(x) = x^4 + 1$$
, $g(x) = x - 5$, $h(x) = \sqrt{x}$

(d)
$$f(x) = \sqrt{x}, g(x) = \frac{x}{x-1}, h(x) = \sqrt[3]{x}$$