Name:
PC: Composition of Functions

Date:
Ms. Loughran

Two functions can be combined to form a new function.
Given: $f(x)=x^{2}+4$ and $g(x)=2 x$, then the composite function $f \mathrm{o} g$, read " f following g ," can be defined by $[f$ o $g](x)=f(g(x))$.

If we want to find $f(g(4))$, we can go about it two ways:

First way:

Since $g(4)=$ then $f(g(4))=f()=$
Therefore $f(g(4))=$

Second way:

Since $g(x)=2 x$, then $f(g(x))=f(\quad)=$
Now we can plug 4 into that rule so $f(g(4))=$

Example 1: Using the functions given above find: (a) $g(f(x))$
(b) $g(f(4))$

Notice that $[f \circ g](x) \neq[g \circ f](x)$. Therefore, the operation of composition is not commutative.

Example 2:
Let $f(x)=3 x-5$ and $g(x)=2-x^{2}$. Find:
(a) $[f$ o $g](0)$
(b) $g(f(0))$
(c) $[f \circ f](4)$
(d) $[g \circ g](3)$
(e) $f(g(-2))$
(f) $g(f(x))$
(g) $(f \circ g)(x)$

Practice:

For 1-6, use the given graphs of f and g to evaluate the expression.

1. $f(g(2))$
2. $g(f(0))$
3. $(g \circ f)(4)$
4. $(f \circ g)(4)$
5. $(g \circ g)(-2)$
6. $(f \circ f)(4)$
7. For each of the following, find the functions $(f \circ g)(x)$ and $(g \circ f)(x)$.
(a) $f(x)=2 x+3, g(x)=4 x-1$
(b) $f(x)=6 x-5, g(x)=\frac{x}{2}$
(c) $f(x)=x^{3}+2, g(x)=\sqrt[3]{x}$
(d) $f(x)=x^{2}, g(x)=\sqrt{x-3}$
(e) $f(x)=x^{2}, g(x)=x-1$
8. Find $f(g(h(x)))$
(a) $f(x)=x-1, g(x)=\sqrt{x}, \quad h(x)=x+1$
(b) $f(x)=\frac{1}{x}, g(x)=x^{3}, \quad h(x)=x^{2}+2$
(c) $f(x)=x^{4}+1, g(x)=x-5, \quad h(x)=\sqrt{x}$
(d) $f(x)=\sqrt{x}, \quad g(x)=\frac{x}{x-1}, \quad h(x)=\sqrt[3]{x}$
