Name:

PC: Decomposition of Functions

Date: Ms. Loughran

Do Now:

Given
$$f(x) = \sqrt{x}$$
 and $g(x) = \frac{1}{x}$, find (a) $f(g(4))$

(a)
$$f(g(4))$$

(b)
$$f(g(x))$$

A composite function is a function that brings together two or more functions. For instance, let h be given by

$$h(x) = \sqrt{x^2 + 2x + 2}$$

If we let $f(x) = x^2 + 2x + 2$ and $g(x) = \sqrt{x}$, then $(g \circ f)(x) =$

Thus the given function h has been decomposed into the composition of the two functions f and g. Such decompositions are not unique. More than one decomposition is possible.

We could have decomposed h into $f(x) = \sqrt{x+2}$ and $g(x) = x^2 + 2x$.

$$f(g(x)) =$$

We are going to avoid using the identity function (f(x) = x) in our decompositions.

1. Find the functions f and g so that h(x) = f(g(x))

(a)
$$h(x) = (3x+1)^2$$

(b)
$$h(x) = \sqrt{1-4x}$$
 (c) $h(x) = \sqrt[4]{x+9}$

(c)
$$h(x) = \sqrt[4]{x+9}$$

Practice

Express the function in the form $f \circ g$

1.
$$F(x) = (x-9)^5$$

4.
$$F(x) = \frac{1}{x+3}$$

2.
$$F(x) = \sqrt{x+1}$$

5.
$$F(x) = |1 - x^3|$$

3.
$$F(x) = \frac{x^2}{x^2 + 4}$$

$$6. \quad F(x) = \sqrt{1 + \sqrt{x}}$$

Express the function in the form $f \circ g \circ h$

7.
$$F(x) = \frac{1}{x^2 + 1}$$

8.	Express each of the	following below	as composites of two	or more of the following:
----	---------------------	-----------------	----------------------	---------------------------

$$a(x) = x + 1$$

$$g(x) = x^3$$

$$b(x) = x - 2$$

$$a(x) = x + 1$$
 $g(x) = x^3$ $b(x) = x - 2$ $h(x) = \frac{1}{x}$

$$e(x) = 3x$$

$$e(x) = 3x$$
 $k(x) = \sqrt{x}$ $f(x) = x^2$

$$f(x) = x^2$$

(a)
$$3x+1$$

(h)
$$x + 2$$

(o)
$$\frac{1}{\sqrt{x}}$$

(b)
$$3x + 3$$

(i)
$$x-1$$

$$(p) \ \frac{1}{\sqrt{x-2}}$$

(c)
$$3x^2$$

(j)
$$x^2 - 1$$

(q)
$$\frac{1}{\sqrt{x}-2}$$

(d)
$$9x^2$$

(k)
$$3x + 2$$

(r)
$$x^{\frac{3}{2}}$$

(e)
$$(x^3-2)^2$$

(1)
$$\sqrt{x^3+1}$$

(s)
$$\frac{1}{3}x$$

(f)
$$9x + 3$$

(m)
$$\sqrt{x+1}$$

(g)
$$\frac{1}{\sqrt{x^2+1}}$$

(n)
$$\sqrt{x} + 1$$