Name:
AP Calc AB: Derivatives of a^{x} and $\log _{a} x$

Date:
Ms. Loughran

Do Now:

1. If $f(x)=\ln |x|$, find $f^{\prime}(x)$.

Derivative of a^{x}

If $a>0$ and $\mathrm{a} \neq 1$ we can use the properties of logarithms to write a^{x} in terms of e^{x} :

$$
a^{x}=
$$

We can then find the derivative of a^{x} with the Chain Rule

$$
\frac{d}{d x}\left(a^{u}\right)=
$$

Derivative of $\log _{a} x$

To find the derivative of $\log _{a} x$ for an arbitrary base $(a>0, a \neq 1)$ we use the change of base formula for logarithms to express $\log _{a} x$ in terms of natural logarithms:

$$
\log _{a} x=
$$

$$
\frac{d}{d x} \log _{a} u=
$$

For each of the following find $\frac{d y}{d x}$.

1. $y=4^{x}$
2. $y=\log _{5} \sqrt{x}$
3. $y=3^{6 x}$
4. $y=5^{\cos x}$
5. $y=\log _{3}(1+x \ln 3)$
6. $y=2^{\sin x}$
7. $y=\ln 2 \cdot \log _{2} x$
8. $y=\log _{10} e^{x}$
9. $y=3^{\cot x}$
10. $y=9^{-x}$
11. $y=e^{x^{2}}$
12. $y=\log _{a} a^{\sin x}$
