Name:	Date:
AP Calc AB: Derivatives of a^x and $\log_a x$	Ms. Loughran

Do Now:

1. If
$$f(x) = \ln |x|$$
, find $f'(x)$.

Derivative of a^x

If a > 0 and $a \ne 1$ we can use the properties of logarithms to write a^x in terms of e^x :

$$a^x =$$

We can then find the derivative of a^x with the Chain Rule

$$\frac{d}{dx}(a^u) =$$

Derivative of $\log_a x$

To find the derivative of $\log_a x$ for an arbitrary base $(a > 0, a \ne 1)$ we use the change of base formula for logarithms to express $\log_a x$ in terms of natural logarithms:

$$\log_a x =$$

$$\frac{d}{dx}\log_a u =$$

For each of the following find $\frac{dy}{dx}$.

1.
$$y = 4^x$$

$$2. \quad y = \log_5 \sqrt{x}$$

3.
$$y = 3^{6x}$$

4.
$$y = 5^{\cos x}$$

5.
$$y = \log_3(1 + x \ln 3)$$

$$6. \quad y = 2^{\sin x}$$

7.
$$y = \ln 2 \cdot \log_2 x$$

8.
$$y = \log_{10} e^x$$

9.
$$y = 3^{\cot x}$$

10.
$$y = 9^{-x}$$

11.
$$y = e^{x^2}$$

12.
$$y = \log_a a^{\sin x}$$