Name:
AP Calc AB: Derivatives of Inverse Functions

Date:
Ms. Loughran

Do Now:

1. If $y=6^{\tan ^{2} x}$, find $\frac{d y}{d x}$.
2. If $y=\log _{4}\left(x^{2}+3 x\right)$, find $\frac{d y}{d x}$.

Inverses of functions:

Given $f(x)$ is a function, we call its inverse function $f^{-1}(x)$. If (x, y) falls on $f(x)$, then (y, x) falls on $f^{-1}(x)$.
$f(g(x))=x$ when f and g are inverses of each other.

Example
If $f(x)=x^{2}, x \geq 0$, find:
(a) $g(x)$ the inverse of $f(x)$
(b) $f^{\prime}(x)$
(c) $g^{\prime}(x)$

Let's take some points that are on $f(x)$ and investigate.
Points on $f(x):(2,4)$ and $(3,9)$
Find: $f^{\prime}(2) \quad g^{\prime}(4)$
$f^{\prime}(3)$

$$
g^{\prime}(9)
$$

\therefore If f and g are inverses, then $g^{\prime}(y)=\frac{1}{f^{\prime}(x)} .[(x, y)$ is a point on $f(x)$.

