N	ame	
IN	anne	

Date:

PC: Even and Odd Functions

Let f be a function.

f is even if f(-x) = f(x) for all x in the domain of f

f is odd if f(-x) = -f(x) for all x in the domain of f

The graph of an even function is symmetric with respect to the y-axis.

The graph of an odd function is symmetric with respect to the origin.

Examples:

Determine whether the functions are even, odd, or neither even nor odd.

1.
$$f(x) = x^5 + x$$

2.
$$g(x) = 1 - x^4$$

1.
$$f(x) = x^5 + x$$
 2. $g(x) = 1 - x^4$ 3. $h(x) = 2x - x^2$

4.
$$f(x) = 3x^3 + 2x^2 + 1$$

4.
$$f(x) = 3x^3 + 2x^2 + 1$$
 5. $g(x) = x + \frac{1}{x}$

6.
$$h(x) = x^4 - 4x^2$$

Exercises

- 1. If a function is even, its graph is symmetric with respect to the _____. This also means that f(-x) = _____.
- 2. If a function is odd, its graph is symmetric with respect to the _____. This also means that f(-x) = _____.

Determine whether each function graphed is even, odd, or neither

3.

4.

___5.

____6.

____7

____8.

___9.

___10.

____11.

Determine algebraically whether each of the following functions is even, odd or neither.

12.
$$f(x) = 4x + 5$$

13.
$$f(x) = x^3 - x$$

14.
$$f(x) = x^2 - 6$$

15.
$$f(x) = x^3 - x - 2$$

16.
$$f(x) = \frac{x^4 - x}{x^5 - x}$$

17.
$$f(x) = \frac{x^3 - x}{x^5}$$

18.
$$f(x) = (x-4)^2$$

19.
$$f(x) = x^4 - x^2 + 4$$

More Practice

1. Indicate which of the following functions are even, which are odd, and which are neither.

Graph (c)

- 2. Algebraically, determine whether each function is odd, even, or neither.
 - a) $f(x) = 3x^4 5x^2 + 17$

- b) f(x) = |x|
- c) $f(x) = 12x^7 + 6x^3 2x$
- d) $f(x) = 4x^3 7$

e) $f(x) = x^2 + 2x + 2$

f) $f(x) = \frac{x^2 - 5}{2x^3 + x}$