Name:
AP Calculus AB: Extreme Value Theorem HW

Date:
Ms. Loughran

2001: AB-4; BC-4

Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?

For 1 and 2, find the absolute maximum and minimum values of f on the given closed interval, and state where those values occur.

1. $f(x)=4 x^{2}-4 x+1 ;[0,1]$
2. $f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}} ;[-1,1]$
3. Find the absolute maximum and minimum values of f, if any, on the given interval and state where those values occur.

$$
f(x)=x^{2}-3 x-1 ;(-\infty, \infty)
$$

