

° [1] 7 ° [2] -7 ° [3] 5 ° [4] -5

- **3.** Which function is *not* one-to-one?
 - $\begin{bmatrix} 1 \end{bmatrix} \{ (0,1), (1,2), (2,3), (3,4) \} \\ \begin{bmatrix} 2 \end{bmatrix} \{ (0,0), (1,1), (2,2), (3,3) \}$
 - [2] [(0,0), (1,1), (2,2), (3,3)]
 - **C** [3] {(0,1), (1,0), (2,3), (3,2)}
 - $\circ [4] \{(0,1), (1,0), (2,0), (3,2)\}$
- 4. Which graph is *not* a function?

- 5. If the domain of f(x) = 2x + 1 is $\{-2 \le x \le 3\}$, which integer is *not* in the range?
 - ° [1] -4 ° [2] -2 ° [3] 0 ° [4] 7

- 6. If $f(x) = x^2 + 4$ and $g(x) = \sqrt{1-x}$, what is the value of f(g(-3))? [1] 13
 [2] 8
 [3] 2
 [4] $2i\sqrt{3}$
- 7. Which equation does *not* represent a function? [1] y = 2x[2] $y = x^2 + 10$ [3] y = 10/x[4] $x^2 + y^2 = 95$
- 8. What is the inverse of the function y = 2x 3? $y = \frac{x+3}{2}$ $y = \frac{x}{2} + 3$ $y = \frac{x}{2} + 3$ y = -2x + 3 $y = \frac{1}{2x-3}$

9. Given
$$g(x) = \frac{1}{x-4}$$
, find $g\left(\frac{2}{5}\right)$.
 $(1) -5/3$ $(2) -5/18$ $(3) -18/5$ $(4) -3/5$

10. The function f(x) = 3x - 7 is

- [1] one-to-one, but not onto
- [2] onto, but not one-to-one
- [3] both one-to-one and onto
- [4] neither one-to-one nor onto

11. The range of the function
$$f(x) = (x + 6)^2$$
 is

 [1] All Reals
 [3] [-6, ∞)
 [2] [6, ∞)
 [4] [0, ∞)
 [4] [0, ∞)