Name:
AP Calculus: Higher Derivatives Homework

Date:
Ms. Loughran

1. Find an equation of the tangent line to the graph of $y=f(x)$ at the point where $x=-3$ if $f(-3)=2$ and $f^{\prime}(-3)=5$.
2. Find $\frac{d^{2} y}{d x^{2}}$
(a) $y=7 x^{3}-5 x^{2}+x$
(b) $y=12 x^{2}-2 x+3$
3. Find $y^{\prime \prime \prime}$.
(a) $y=x^{-5}+x^{5}$
(b) $y=\frac{1}{x}$
(c) $y=a x^{3}+b x+c$ (a, b and c are constants)
4. Find (a) $f^{\prime \prime \prime}(2)$ where $f(x)=3 x^{2}-2$
(b) $\left.\frac{d^{4} y}{d x^{4}}\right|_{x=1}$, where $y=\frac{1}{x^{3}}$
5. Show that $y=x^{3}+3 x+1$ satisfies $y^{\prime \prime \prime}+x y^{\prime \prime}-2 y^{\prime}=0$.
6. Given that $f(-2)=3$ and $f^{\prime}(-2)=5$, find an equation for the tangent line to the graph of $y=f(x)$ at the point where $x=-2$.
