Name:	Date:
PC: Inverses	Ms. Loughran

The functions f and g are inverse functions if f(g(x)) = g(f(x)) = x.

Example1:

Let
$$f(x) = 2x + 1$$
 and $g(x) = \frac{x-1}{2}$, are f and g inverse functions?

The symbol f^{-1} is often used for the inverse of function f. The inverse "undoes" or reverses what the function has done. The inverse of a function interchanges the domain and range. That is for every point (a,b) on the graph of f, there is a point (b,a) on the graph of the inverse of f. The graphs of a function and its inverse are symmetric with respect to the line y = x.

Example 2:

Let $g(x) = \{(1,2),(2,2),(3,2),(4,2),(5,2)\}$, find the inverse of g? Is the inverse also a function?

Example 3:

Let f(x) = 2x - 3, find the inverse of f? Is the inverse also a function?

A function whose inverse is also a function is called one to one. (can also be written as 1-1) It is easy to detect a one to one function from its graph using the **horizontal line test.** A function is 1-1 if and only if no horizontal line intersects the graph more than once.

Example 4:

Let $h(x) = x^2$, find the inverse of h? Is h(x) one to one?

We can make the inverse of h from example 4 a function by restricting its domain.

Practice:

Inverse Relations

Find the inverse for each relation.

1.
$$\{(1, -3), (-2, 3), (5, 1), (6, 4)\}$$
 2. $\{(-5, 7), (-6, -8), (1, -2), (10, 3)\}$

Finding Inverses

Find an equation for the inverse for each of the following relations.

3.
$$y = 3x + 2$$
 4. $y = -5x - 7$ 5. $y = 12x - 3$

6.
$$y = -8x + 16$$
 7. $y = \frac{2}{3}x - 5$ 8. $y = -\frac{3}{4}x + 5$

9.
$$y = -\frac{5}{8}x + 10$$
 10. $y = \frac{1}{2}x + 8$ 11. $y = x^2 + 5$

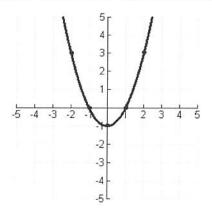
12.
$$y = x^2 - 4$$
 13. $y = (x + 3)^2$ 14. $y = (x - 6)^2$

15.
$$y = \sqrt{x-2}, y \ge 0$$
 16. $y = \sqrt{x+5}, y \ge 0$ 17. $y = \sqrt{x+8}, y \ge 8$

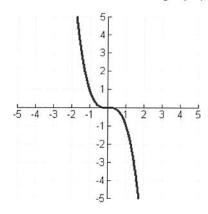
18.
$$y = \sqrt{x} - 7, y \ge -7$$

Verifying Inverses

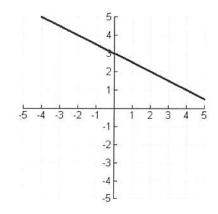
Verify that f and g are inverse functions.

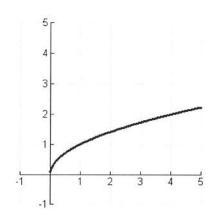

19.
$$f(x) = x + 6$$
, $g(x) = x - 6$ 20. $f(x) = 5x + 2$, $g(x) = \frac{x - 2}{5}$

21.
$$f(x) = -3x - 9$$
, $g(x) = -\frac{1}{3}x - 3$ 22. $f(x) = 2x - 7$, $g(x) = \frac{x + 7}{2}$


23.
$$f(x) = -4x + 8$$
, $g(x) = -\frac{1}{4}x + 2$ 24. $f(x) = \frac{1}{2}x - 7$, $g(x) = 2x + 14$

Graphing InversesGraph the inverse for each relation below (put your answer on the same graph).


25.


26.

27.

28.

