Name:
PCH: Inverses of Matrices

Date:
Ms. Loughran

Do Now:

1. Find $A B$ and $B A$, if possible.

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]
$$

The identity matrix of a square matrix has entries of 1 on its main diagonal and 0 's as all other entries.
I_{2} means the identity matrix of a 2×2 matrix, I_{3} means the identity matrix of a 3×3 matrix and so on.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let A be an $n \times n$ matrix. If there exists a matrix A^{-1} such that $A A^{-1}=I_{n}=A^{-1} A, A^{-1}$ is called the inverse of A.

1. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

2. Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
6 & -2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right]
$$

To find the inverse of a 2×2 matrix we are going to use the determinant.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then the determinant of A is $a d-b c$, and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
3. Find A^{-1} and verify that $A A^{-1}=A^{-1} A=I_{2}$

$$
A=\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right]
$$

4. Find the inverse of A.

$$
A=\left[\begin{array}{cc}
7 & -4 \\
8 & 0
\end{array}\right]
$$

5. Find the inverse of B, if it exists.

$$
B=\left[\begin{array}{cc}
8 & 4 \\
-4 & -2
\end{array}\right]
$$

We can use inverses to solve systems of linear equations.

If A is an invertible matrix (if A has an inverse), the system of linear equations represented by $A X=B$ has a unique solution:

$$
A X=B
$$

$$
X=
$$

6. Solve the system using the inverse, if possible.

$$
\begin{aligned}
& 2 x-5 y=15 \\
& 3 x-6 y=36
\end{aligned}
$$

7. Solve the system using the inverse, if possible.

$$
\begin{aligned}
& 3 x+4 y=-2 \\
& 5 x+3 y=4
\end{aligned}
$$

For 8 and 9 , verify if B is the inverse of A.
8. $A=\left[\begin{array}{cc}3 & -2 \\ -4 & 6\end{array}\right] \quad B=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ \frac{2}{5} & \frac{3}{10}\end{array}\right]$

$$
\text { 9. } A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
-3 & -2 & 5 \\
-6 & 4 & 4
\end{array}\right] \quad B=\left[\begin{array}{ccc}
-14 & -6 & \frac{1}{2} \\
-9 & 4 & \frac{1}{2} \\
-12 & -5 & \frac{1}{2}
\end{array}\right]
$$

10.

For what value(s) of x does the matrix M have an inverse?

$$
M=\left[\begin{array}{cc}
x & 1 \\
2 & x+1
\end{array}\right]
$$

