Name: KU
PC Review shee. for Exam 3 Quarter 3

Date:
Ms. Loughran

1. Copy and complete the following table.

| $\theta$ | $0^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $180^{\circ}$ | $270^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radians | D | $\pi / 6$ | $\pi / 4$ | $\pi / 3$ | $\pi / 2$ | $\pi$ | $3 \pi / 2$ | $2 \pi$ |
| $\operatorname{Sin} \theta$ | 0 | 1/2 | 52/2 | $\sqrt{3} / 2$ | 1 | 0 | -1 | 0 |
| $\operatorname{Cos} \theta$ | 1 | $\sqrt{3} / 2$ | $\sqrt{2} / 2$ | $1 / 2$ | 0 | -1 | 0 | 1 |
| $\operatorname{Tan} \theta$ | 0 | $\sqrt{3} / 3$ | 1 | $\sqrt{3}$ | und | 0 | und. | 0 |
| $\operatorname{Csc} \theta$ | und. | 2 | $\sqrt{2} w \frac{2}{}{ }^{\frac{1}{2}}$ | $2 \sqrt{3} / 3 \times \frac{2}{6}$ | 1 | und. | -1 | una. |
| $\operatorname{Sec} \theta$ | 1 | $2 \sqrt{3} / 3 \times \frac{2}{\sqrt{3}}$ | $\sqrt{2} \alpha^{\frac{2}{2}}$ | 2 | und. | -1 | und. | 1 |
| $\operatorname{Cot} \theta$ | und | $\sqrt{3} \alpha^{3 / 3}$ | 1 | $\sqrt{3} / 3^{\text {or }} \frac{1}{6}$ | 0 | und. | 0 | und |

2. Determine the quadrant in which $x$ lies if
(a) $\sin x>0$ and $\cot x<0$ II
(b) $\csc x<0$ and $\cot x<0$ IV
(c) $\sec x>0$ and $\sin x<0$ IV
(d) $\cot x<0$ and $\sec x<0 \quad$ II
(e) $\cot x>0$ and $\csc x>0$ I
3. Express in degrees the angle whose radian measure is:
(a) $\frac{8 \pi}{3}$
(b) $-\pi$
(c) $\frac{3 \pi}{5}$
4. Express in radian measure the angle whose degree measure is:
(a) $15^{\circ}$
(b) $-600^{\circ}$
(c) $124^{\circ}$
5. In which quadrant does an angle of $\frac{3 \pi}{4}$ lie? How about $-\frac{3 \pi}{4}$ ?
6. Point $P$ with coordinates $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ lies on the unit circle, find:
a. $\sin \theta$
b. $\cos \theta$
c. $\tan \theta$
7. Express each of the following as a function of a positive acute angle.
a. $\sin 140^{\circ}$
b. $\cos 250^{\circ}$
c. $\tan 300^{\circ}$
d. $\cos 135^{\circ}$
e. $\sin \frac{5 \pi}{6}$
f. $\tan \frac{7 \pi}{6}$
(3) a) $\frac{8 \pi}{3} \cdot \frac{\frac{60}{7 \pi}}{\pi}=480^{\circ}$
b) $-\pi \cdot \frac{180}{\pi}=-180^{\circ}$
c) $\frac{3 \pi}{8} \cdot \frac{\frac{36}{73}}{\pi}=108^{\circ}$
(4).) $15^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{12}$
b) $-600^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{-10 \pi}{3}$
c) $124^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{31 \pi}{45}$
(5) $\frac{3 \mathbb{F}}{4} \cdot \frac{180^{\circ}}{\pi}=135^{\circ} \quad$ QII $\quad-3 \pi / 4=-135^{\circ} \quad$ QIII
(b) a) $\sin \theta=\sqrt{3} / 2$
b) $\cos \theta=\frac{1}{2}$
c) $\tan \theta=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$

Q (70) $\sin 140^{\circ}=\sin \left(180^{\circ} 140^{\circ}\right)=\sin \left(40^{\circ}\right)$
b) $\cos 250^{\circ}=-\cos \left(250^{\circ}-180^{\circ}\right)=-\cos 70^{\circ}$
c) $\tan 300^{\circ}=-\tan \left(360^{\circ}-300^{\circ}\right)=-\tan 60^{\circ}$
d) $\cos 135^{\circ}=-\cos \left(180^{\circ}-135^{\circ}\right)=-\cos 45^{\circ}$
e) $\sin 5 \pi / 6=\sin \left(150^{\circ}\right)=\sin \left(180^{\circ}-150^{\circ}\right)=\sin 30^{\circ}=\sin \frac{5 \pi}{6}$
f) $\tan 7 \pi / 6=\tan \left(210^{\circ}\right)=\tan \left(210^{\circ}-180^{\circ}\right)=\tan 30^{\circ}=\tan \frac{\pi}{6}$
(8) a) $\cot 120^{\circ}=\frac{1}{\tan 120^{\circ}}=\frac{1}{-\tan \left(180^{\circ}-120^{\circ}\right)}=\frac{1}{-\tan 60^{\circ}}=\frac{1}{-\sqrt{3}}$ or $-\sqrt{3} / 3$
b)

$$
\begin{aligned}
\sec 210^{\circ}=\frac{1}{\cos 210^{\circ}}=\frac{1}{-\cos \left(210^{\circ}-180^{\circ}\right)}=\frac{1}{-\cos 30^{\circ}} & =\frac{1}{-\frac{\sqrt{3}}{2}} \\
& =\frac{-2}{\sqrt{3}} \stackrel{\text { or }}{=}-\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

c) $\tan 240^{\circ}=\tan \left(240^{\circ}-180^{\circ}\right)=\tan 60^{\circ}=\sqrt{3}$
d)

$$
\begin{aligned}
\sec \frac{4 \pi}{3}=\frac{1}{\cos ^{4 \pi / 3}}=\frac{1}{\cos 240^{\circ}}=\frac{1}{-\cos \left(240^{\circ}-180^{\circ}\right)} & =\frac{1}{-\cos 60^{\circ}} \\
& =\frac{1}{-\frac{1}{2}}=-2
\end{aligned}
$$

e) $\cos \left(-330^{\circ}\right)=\cos 30^{\circ}=\sqrt{3} / 2$
f) $\sin 405^{\circ}=\sin \left(405^{\circ}-360^{\circ}\right)=\sin 45^{\circ}=\sqrt{2} / 2$
(a) $\tan A+\tan ^{+} A \sin A \oplus$
$\sin A \oplus \quad I$
skippel
(10) $\tan A=-\frac{3^{\text {opp. }}}{4 \text { adj }} \quad$ yyp:5
$\operatorname{te} A \theta$
$\operatorname{Cos} A \oplus$

$$
\sin A=-3 / 5 \quad \csc A=-5 / 3
$$

$$
\omega+A=\frac{-4}{3}
$$

QIV

$$
\cos A=4 / 5
$$

$$
\sec A=5 / 4
$$

skipped
(11) $\tan x=-1$

$$
\tan x=-\frac{1}{1}=\frac{0 p e}{a d ;}
$$

$$
\begin{aligned}
1^{2}+1^{2}= & (h y p)^{2} \\
2= & \left(h_{y p}\right)^{2} \\
& h y p=\sqrt{2}
\end{aligned}
$$

QII

$$
\begin{array}{lll}
\sin x=\frac{1}{\sqrt{2}}=\sqrt{2} / 2 & \csc x=\sqrt{2} & \cot x=-1 \\
\cos x=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} & \sec x=-\sqrt{2} &
\end{array}
$$

(12)

$$
f(\pi / 6)=f\left(30^{\circ}\right)=
$$

$$
\tan 5\left(30^{\circ}\right)-\sin 2\left(30^{\circ}\right)
$$

$$
\tan 150^{\circ}-\sin 60
$$

$$
-\sqrt{3} / 3-\sqrt{3} / 2
$$

(13)

$$
\text { a) } \begin{aligned}
& \csc \theta \sin \theta \\
& \frac{1}{\sin \theta} \cdot \sin \theta=1
\end{aligned}
$$

b) $\sin \theta \cot \theta$

$$
\sin \theta \cdot \frac{\cos \theta}{\sin \theta}=\cos \theta
$$

c) $\tan \theta \cos \theta$

$$
\frac{\sin \theta}{\cos \theta} \cdot \cos \theta=\sin \theta
$$

d) $\sec \theta$ ot $\theta$

$$
\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta} \text { or } \csc \theta
$$

e)

$$
\begin{aligned}
& \sec \theta+\tan \theta \\
& \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=\frac{1+\sin \theta}{\cos \theta}
\end{aligned}
$$

f) $\frac{\sec \theta}{\csc \theta}=\frac{\frac{1}{\cos \theta}}{\frac{1}{\sin \theta}}=\frac{1}{\cos \theta} \frac{\sin \theta}{1}=\frac{\sin \theta}{\cos \theta}=\tan \theta$
g)

$$
\begin{aligned}
& \text { g) } \csc ^{2} \theta-\frac{\cot \theta}{\tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \csc ^{2} \theta-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& \frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& \frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { h) } \sec \theta(1+\cot \theta)-\csc \theta(1+\tan \theta) \\
& \sec \theta+\sec \theta \cot \theta-\cos \theta-\csc \theta \tan \theta \\
& \frac{1}{\cos \theta}+\frac{1}{\cos \theta} \cos \theta \\
& \sin \theta \\
& \frac{1}{\sin \theta}-\frac{1}{\sin \theta}=\frac{\sin \theta}{\cos \theta} \\
& \cos \theta
\end{aligned}+\frac{1}{\sin \theta}-\frac{1}{\sin \theta}-\frac{1}{\cos \theta}=0 \quad l
$$

(14)

$$
\begin{aligned}
f(\pi)=f\left(180^{\circ}\right)= & -3 \sin 2\left(180^{\circ}\right) \\
& -3 \sin 360^{\circ}=0
\end{aligned}
$$

(15)

$$
\begin{aligned}
f(\pi)=f\left(180^{\circ}\right)= & \sec 180^{\circ}+\cot \frac{180^{\circ}}{3} \\
& \sec 180^{\circ}+\cot 60^{\circ} \\
& -1+\sqrt{3} / 3 \text { or }-1+\frac{1}{\sqrt{3}}
\end{aligned}
$$

(16)

$$
\begin{aligned}
& \frac{\cos \theta \tan \theta+\sin ^{2} \theta}{1+\sin \theta}=\sin \theta \\
& \frac{\cos \theta \cdot \frac{\sin \theta}{\cos \theta}+\sin ^{2} \theta}{\frac{1+\sin \theta}{\sin \theta(1+5 \sin \theta)}} \frac{\sin \theta+\sin ^{2} \theta}{1+\sin 0 \quad \sin \theta}=\sin \theta
\end{aligned}
$$

$$
\text { let } y=\cos \theta
$$

$3 y+1=1$
(17)

$$
\begin{aligned}
\text { let } x & =\sin \theta \\
2 x-1 & =0 \\
2 x & =1 \\
x & =\frac{1}{2} \\
\sin \theta & =\frac{1}{2}
\end{aligned}
$$

(18)

$$
\begin{aligned}
& 3 y=0 \\
& y=0 \\
& \cos \theta=0 \\
& =90^{\circ}, 270^{\circ} \quad(1,0) \bigoplus_{(i,-1)}^{(1,1)}
\end{aligned}
$$

QI $30^{\circ}$ QII $180-30=150^{\circ}$
(9)

$$
\begin{gathered}
3 \tan \theta-2=\tan \theta \\
\text { let } x=\tan \theta \\
3 x-2=x \\
-2=-2 x \\
1=x \\
\tan \theta=1
\end{gathered}
$$

QI $45^{\circ}$ QIII $180^{\circ}+45^{\circ}=225^{\circ}$
(90) let $x=\cos \theta$
(21) $1 \operatorname{ct} y=\cos \theta$

$$
\begin{array}{r}
4(x+1)=0 \\
4 x+4=0 \\
4 x=-4 \\
x=-1 \\
\cos \theta=-1 \\
180^{\circ} \\
\{\pi\}
\end{array}
$$

$$
\text { aI } 30^{\circ}=\pi / 6
$$

$$
\text { QIV } 330^{\circ}=\frac{11 \pi}{6}
$$

$$
\{\pi / 6,11 \pi / 6\}
$$

(22) Let $x=\sin \theta$

$$
2(x+1)=x+3
$$

$$
2 x+2=x+3
$$

$$
x=1
$$

$$
\sin \theta=1
$$

$$
\theta=90^{\circ}
$$

$$
\{\pi / 2\}
$$

