Name:	Date:
AP Calc AB: Linear Approximations	Ms. Loughran

Do Now

- 1. Given $f(x) = x^3$
 - (a) Write an equation for the line tangent to the curve at x = 1
 - (b) Using the equation in (a) estimate f(1.1).
 - (c) Evaluate f(1.1) using your calculator.
 - (d) Compare your findings in (b) and (c), what do you notice?

Tangent line approximation:

2.

1995 AB3

Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$.

- (a) Find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point (4,-1).
- (c) There is a number k so that the point (4.2,k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
- (d) Write an equation that can be solved to find the actual value of k so that the point (4.2,k) is on the curve.
- (e) Solve the equation found in part (d) for the value of k.

Classwork

- 1. Make a table of x and approximate y values for the equation $y^3 xy = -6$ near x = 7, y = 2. Your table should include the x values 6.8, 6.9, 7.0, 7.1, and 7.2.
- 2. Consider the equation $x^3 + y^3 xy^2 = 5$.
 - (a) Find $\frac{dy}{dx}$ by implicit differentiation.
 - (b) Give a table of approximate values near x = 1, y = 2 for x = 0.96, 0.98, 1, 1.02, 1.04.
 - (c) Find the y value for x = 0.96 by substituting x = 0.96 in the equation and solving for y using your calculator. Compare with your answer in part (b).
- 3. Consider the curve $xe^{5y} = 3y$
 - (a) Find $\frac{dy}{dx}$ by implicit differentiation.
 - (b) Find the equation of the tangent line to the curve at (0,0).
 - (c) If x = 0.1, estimate y using the tangent line.