Name:
AP Calc AB: Linear Approximations

Date:
Ms. Loughran

Do Now

1. Given $f(x)=x^{3}$
(a) Write an equation for the line tangent to the curve at $x=1$
(b) Using the equation in (a) estimate $f(1.1)$.
(c) Evaluate $f(1.1)$ using your calculator.
(d) Compare your findings in (b) and (c), what do you notice?

Tangent line approximation:

2.

1995 AB3

Consider the curve defined by $-8 x^{2}+5 x y+y^{3}=-149$.
(a) Find $\frac{d y}{d x}$.
(b) Write an equation for the line tangent to the curve at the point $(4,-1)$.
(c) There is a number k so that the point $(4 \cdot 2, k)$ is on the curve. Using the tangent line found in part (b), approximate the value of k.
(d) Write an equation that can be solved to find the actual value of k so that the point $(4.2, k)$ is on the curve.
(e) Solve the equation found in part (d) for the value of k.

Classwork

1. Make a table of x and approximate y values for the equation $y^{3}-x y=-6$ near $x=7, y=2$. Your table should include the x values $6.8,6.9,7.0,7.1$, and 7.2.
2. Consider the equation $x^{3}+y^{3}-x y^{2}=5$.
(a) Find $\frac{d y}{d x}$ by implicit differentiation.
(b) Give a table of approximate values near $x=1, y=2$ for $x=0.96,0.98,1,1.02,1.04$.
(c) Find the y value for $x=0.96$ by substituting $x=0.96$ in the equation and solving for y using your calculator. Compare with your answer in part (b).
3. Consider the curve $x e^{5 y}=3 y$
(a) Find $\frac{d y}{d x}$ by implicit differentiation.
(b) Find the equation of the tangent line to the curve at $(0,0)$.
(c) If $x=0.1$, estimate y using the tangent line.
