$$
f^{\prime}(c)=\lim _{x \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

(midturn Review
(1)(B) ($\quad\left(\operatorname{Ax}(D) \neq P^{\text {toof }}\right.$

Thftertion
(2) (A)
(3) (B)
(4) $f^{\prime}(1)$ for $f(x)=x^{6}, f^{\prime}(x)=6 x^{5} ; f^{\prime}(1)=6 \quad$ (c)

(6) $f^{\prime}(e)$ for $f(x)=\ln x, f^{\prime}(x)=\frac{1}{x}, f^{\prime}(e)=\frac{1}{e}(B)$
(7) $\lim _{x \rightarrow 0} \frac{\cos (0+x)-\cos 0}{\frac{x}{x}}=f^{\prime}(0)$ for $f(x)=\cos x, f^{\prime}(x)=-\sin x, f^{\prime}(0)=0$
(8)
(a)

f has a relative maximum at $x=2$ b/c f^{\prime} changes from Θ of θ at $x=2$
(b)

(9) $y^{2}=2+x y=$
(b) $\frac{y}{2 y-x}=\frac{1}{2}$
(c)
(a) $2 y d y / d x=x^{d y} / d x+y$
$2 y=2 y-x$

$$
\frac{y}{2 y-x} \neq 0
$$

$$
0=-x \quad \infty(0, \pm \sqrt{2})
$$

$y=0$
dy $) d x(2 y-x)=y$
$x=0$
$0^{2} \neq 2+0$ so the

$$
d y / d x=\frac{y}{2 y-x}
$$

If $x=0, y^{2}=2, y= \pm \sqrt{2}$
curve does nothare a
honrontal tongent.
or $\quad \begin{aligned} & y^{2}=2+x y \\ & 2 y d t=x d a t+y \frac{d x}{a t} \Rightarrow 2(3)(6)=\frac{7}{3}(6)+3\left(\frac{d x}{a t}\right. \\ & 36=14+3 \frac{d x}{a t}\end{aligned}$
when $y=3, \quad 3^{2}=2+3 x \quad 22=3 \frac{d x}{a t}$
(d)

$$
\begin{aligned}
d y / d t & =\frac{d y / d x}{} \cdot d x / d t \\
& =\frac{y}{2 y-x} \cdot \frac{d x}{d t}
\end{aligned}
$$

$$
7=3 x, x=7 / 3 \quad \frac{22}{3}=\frac{d x}{a t}
$$

(10) (D)

It $t=5$

$$
\begin{align*}
& 6=\frac{3}{6-7 / 3} \cdot d x / d t \tag{II}\\
& 6=3 / 1 / 3 \cdot d x / d t \\
& 6=9 / 11 d x / d t \\
& 22 / 3=d x / d t
\end{align*}
$$

(19) $\left(\right.$ a) $\frac{x(3)-x(1)}{3-1}=\frac{e^{3}-\sqrt{3}-(e-1)}{2}=\frac{e^{3}-e-\sqrt{3}+1}{2}=8.318 \mathrm{ft} / \mathrm{sec}$
(b) $v(t)=e^{t}-\frac{1}{2 \sqrt{t}}, v(1)=e-\frac{1}{2 \sqrt{1}}=e-\frac{1}{2}=2.218 \mathrm{ft} / \mathrm{sec}$ to the right
(c)

particle moves to the right when $v(t)>0$

$$
t>0.176
$$

(d) Veloaty is zero when $t=0.17586786 \ldots$

$$
x(0.17586786 \ldots)=0.773 \mathrm{ft}
$$

(18) $x=-3906462 \approx-0.391$
(4) $f^{\prime}(x)=0$ or dne Three (B)

6

$$
\begin{align*}
& f^{\prime}(x)=4 x^{3}+4 x \quad f^{\prime}(x)=1 \quad f(-237) \tag{c}\\
& x \approx .237 \quad \text { p+ }(.237, .115) \\
& y-.115=1(x-.237) \quad \text { (D) } \tag{D}\\
& y=x-.237+115 \Rightarrow y=x-.122
\end{align*}
$$

(4)

$$
f(x)=\cos (2 x)+\ln (3 x)
$$

NDens tuice

$$
f^{\prime \prime}(x)=0 \quad x \approx .932(B)
$$

開)

$$
\begin{align*}
& f(x)<\sqrt[5]{x^{3}-2 x} \\
& f^{\prime}(\sqrt{3})=.90215 \tag{B}
\end{align*}
$$

(18) $f(x)=5 x^{3}+x \quad g(x)=f^{-1}(x)$, find $g^{\prime}(6)$

$$
\begin{gathered}
5 x^{3}+x=6 \\
x=1
\end{gathered}
$$

$$
\begin{aligned}
& f^{\prime}(x)=15 x^{2}+1 \\
& f^{\prime}(1)=15(1)^{2}+1=16 \\
& g^{\prime}(6)=\frac{1}{f^{\prime}(1)}=\frac{1}{16}
\end{aligned}
$$

(19) $f(x)= \begin{cases}2 x+3, & x \leq 4 \\ 7+\frac{16}{x}, & x>4\end{cases}$
(20) (a) $f(x)= \begin{cases}7 x-2, & x \leq 1 \\ k x^{2} & x>1\end{cases}$ $7(1)-2=k(1)^{2}$ $G 5=k^{2}$
$2(4)+3=11$ no points of $7+\frac{10}{4}=11 \quad$ discontinuity
(b) $f(x)=\left\{\begin{array}{l}k x^{2}, x \leq 2 \\ 2 x+k, x>2\end{array}\right.$ $12(2)+k$
$4 k=4+k$ $3 k=4 / 4$
$k=4 / 3$
(21) $\lim _{x \rightarrow+0} \sin \left(\frac{\pi x}{2-3 x}\right)=\sin (-\pi / 3)=(-\sqrt{3} / 2)$ (22) $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\theta}=3$ (3)
(3) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x}=7 / 3$

(25) $f(x)= \begin{cases}\tan k x & x<0 \\ 3 x+2 k^{2} & x<0\end{cases}$

Frnd a nonero valve.
(26) $\left(\right.$ a $\frac{\sqrt{s(3)}-s(1)}{3-1}=\frac{30-4}{2}=\frac{26}{2}=13$ mph $=V_{\text {ang }}[, 37$
(27) - (a) D
(d) C
(b) $s^{\prime}(t)=6 t+1, s^{\prime}(1)=6 \cdot(1)+1=7 \mathrm{mph}$
(b) F
(e) A
(c) $6 t+1=13, \quad 6 t=12, t=2$ hrs.
(c) B
(f) E)
(28) (a) $g^{\prime}(2)$

$$
\begin{array}{rlr}
g(x)=[f(x)]^{3} & \text { (b) } h^{\prime}(2), h(x)=f\left(x^{3}\right) \\
g^{\prime}(x) & =3\left(f(x) \cdot f^{\prime}(x)\right. & h^{\prime}(x)=f^{\prime}\left(x^{3}\right) \cdot 3 x^{2} \\
g^{\prime}(2) & =3(f(2))^{\prime} \cdot f^{\prime}(2) & h^{\prime}(2)=f^{\prime}(8) \cdot 3(2)^{2} \\
& =3(1)^{2} \cdot 7 & -3 \cdot 12 \\
& =\{21 &
\end{array}
$$

