Name:
PCH: Modeling with Functions Practice Packet 4

Date: \qquad
Ms. Loughran

- 1. A rectangle is inscribed in a semicircle of radius 12 as shown. Express the area of the rectangle as a function of x.

$$
\begin{aligned}
& A=1 w \\
& A(x)=2 x \cdot \sqrt{144-x^{2}}, 0<x<12
\end{aligned}
$$

2. Triangle $A B C$ is inscribed in a semicircle of radius 8 so that one of its sides coincides with a diameter. Express the area of the triangle as a function of $x=A C$.

$$
\begin{aligned}
& A=\frac{1}{2} \frac{1}{h} \\
& A(x)=\frac{1}{2} x \cdot \sqrt{256-x^{2}} \quad, 0<x<16
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =16^{2} \\
y^{2} & =256-x^{2} \\
y & = \pm \sqrt{256-x^{2}}
\end{aligned}
$$

3. $A B C D$ is an isosceles trapezoid in which sides $A B$ and $D C$ are parallel. Express the area of the trapezoid as a function of altitude h.

- 4. An isosceles triangle has a perimeter of 8 cm . Express the area A of the triangle as a function of the length b of the base of the triangle.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A(b)=\frac{1}{2} b \cdot(2 \sqrt{4-b}), 0<b<4 \\
& \quad A(b)=b \sqrt{4-b},
\end{aligned}
$$

$$
\log =\frac{8-b}{2} \frac{b^{2}}{4}
$$

$$
b>0
$$

$$
4-b>0
$$

$$
-b>-4
$$

$$
b<4
$$

$$
\begin{aligned}
\left(\frac{b}{2}\right)^{2}+h^{2} & =\left(\frac{8-b}{2}\right)^{2} \\
\frac{b^{2}}{4}+h^{2} & =\frac{(8-b)^{2}}{4} \\
h^{2} & =\frac{(8-b)^{2}}{4}-\frac{b^{2}}{4} \\
h^{2} & =\frac{(8-b)^{2}-b^{2}}{4} \quad h= \pm \sqrt{\frac{(8-b)^{2}-b^{2}}{4}} \\
h & =\sqrt{\frac{64-16 b+b^{2}-b^{2}}{4}} \quad h
\end{aligned} \quad \begin{aligned}
& \frac{46(4-b)}{4} \\
& h=\sqrt{4(4-b)}=2 \sqrt{4-b}
\end{aligned}
$$

$$
\begin{aligned}
& 25-h^{2}>0 \\
& A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& A(h)=\frac{1}{2} h\left(10+10+2 \sqrt{25-h^{2}}\right) \\
& A(h)=\frac{1}{2}\left(20+2 \sqrt{25-h^{2}}\right) \\
& A(h)=10+\sqrt{25-h^{2}} \\
& x^{2}+h^{2}=5^{2} \\
& 0<h<5 \\
& 10+2 x \\
& x^{2}=25-h^{2} \\
& 10+2 \sqrt{25-n^{2}} \\
& x= \pm \sqrt{25-h^{2}}
\end{aligned}
$$

5. The figure shows a right circular cone in which r is the radius of the base, and the slant height is 10 . Express the volume of the cone as a function of r.

$$
\begin{array}{ll}
r>0 & V=\frac{1}{3} \pi r^{2} h \\
-100-r^{2}>0 \\
-10<10
\end{array} \quad V(r)=\frac{1}{3} \pi r^{2} \cdot \sqrt{100-r^{2}}, 0<r<10
$$

