Date:_____ Ms. Loughran

- 1. Use the change of base formula to identify the expression that is equivalent to $\log_3 10$.
 - (a) $\frac{\ln 3}{\ln 10}$ (b) $10\log 3$ (c) $\ln \frac{10}{3}$ (d) $\frac{1}{\log 3}$ (e) None of these
- 2. Simplify: $3e^{2\ln x}$
 - (a) 3^x (b) $3xe^2$ (c) $3x^2$ (d) $\ln x^3$ (e) None of these
- 3. Which of the following equations is not true?
 - (a) $b^{\log_b c} = c$ (b) $\log_1 b = b$ (c) $\log_b b = 1$ (d) All of these equations are false. (e) All of these equations are true.
- 4. Simplify: $\ln \sqrt[4]{e^3 x}$

(a)
$$\frac{3}{4} + \frac{1}{4} \ln x$$
 (b) $\frac{3}{4} + \ln \frac{3}{4}$ (c) $\frac{3e}{4} + \frac{1}{4} \ln x$ (d) $\frac{3e}{4} + \ln \frac{x}{4}$ (e) None of these

5. Find the vertical asymptote:
$$f(x) = \ln(x+2)$$
.

(a)
$$x = 2$$
 (b) $x = 0$ (c) $y = 2$ (d) $x = -2$ (e) None of these

6. Match the graph with the correct function.

(a) $f(x) = e^x$	(b) $f(x) = e^{x-1}$
(c) $f(x) = \ln x$	(d) $f(x) = \ln(x-1)$
(e) None of these.	

7. Solve for *x*: $\ln(7 - x) + \ln(3x + 5) = \ln(24x)$.

8. Solve the equation for *x*: $(\ln x - 2)^3 - 4(\ln x - 2) = 0$

- 9. Evaluate each of the following:
 - (a) $\log_8 32 + \log_{27} 9$
 - (b) $(\log_{32} 25)(\log_5 8)$

10. If $\log 3 = a$ and $\log 5 = b$, rewrite $\log(\frac{50}{3})$ in terms of a and b.

11. Solve $\log_3(\log_2(\log_4 x)) = 0$