Name:
PC: Applications of Matrices and Determinants

Date:
Ms. Loughran

Do Now:

1. Given: $A=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 12 & 4 \\ 1 & 6 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}10 & -5 & 5 \\ 30 & 0 & 10 \\ 0 & 10 & 1\end{array}\right]$
(a) Find $A B$.
(b) Find $\operatorname{det}(A)$
(c) Find $\operatorname{det}(A B)$

The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by

$$
\text { Area }= \pm \frac{1}{2} \text { determinant of }\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]
$$

where the symbol \pm indicates that the appropriate sign should be chosen to yield a positive area.

1. Find the area of a triangle whose vertices are $(1,0),(2,2)$ and $(4,3)$.
2. Find the area of a triangle whose vertices are $(-3,5),(2,6)$ and $(3,-5)$.

Test for Collinear Points: Three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear (lie on the same line) if and only if

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0 \quad(\text { the determinant }=0)
$$

3. Determine whether the points $(-2,-2),(1,1)$ and $(7,5)$ lie on the same line.
4. Determine whether the points $(3,-1),(0,-3)$ and $(12,5)$ are collinear.

The test for collinear points can be adapted to another use. If you have two points on a rectangular coordinate system, you can find the equation of the line passing through the two points.
5. Find an equation of a line that passes through $(2,4)$ and $(-1,3)$.
6. Find an equation of a line that passes through $(4,3)$ and $(2,2)$.

Homework: Textbook pp.646-647 \#s 5, 7, 23, 25, 27, 29 (For 23 and 25, determine if those points are collinear without your calculator.)

