Name:		Date:
PC: Cramer's Rule		Ms. Loughran
Do Now:		
1. Solve using an inverse matrix:	4x - 2y = 10 $3x - 5y = 11$	

We can also use Cramer's rule to solve systems of linear equations.

Steps:

- 1. Set up a coefficient matrix.
- 2. Find the determinant of the coefficient matrix. If the determinant $\neq 0$ you can use Cramer's Rule.
- 3. To find *x* value, replace first column (*x* column) with the answer column and find determinant. Now divide this determinant by the original matrix's determinant, this quotient is your *x* value.
- 4. To solve for *y* value, replace second column (*y* column) with the answer column and find the determinant. Now divide this determinant by the original matrix's determinant, this quotient is your *y* value.

Let's go back to the Do Now and solve the system using Cramer's Rule.

Solve each of the following systems using Cramer's Rule, if possible.

2.
$$5x + 4y = 2$$
$$-x + y = -22$$

$$3. \quad 2x - 5y = 2$$
$$3x - 7y = 1$$

$$4. \quad \begin{aligned}
-2x + 8y &= 1 \\
x - 4y &= 5
\end{aligned}$$

Practice

Solve each of the following systems using Cramer's Rule, if possible.

1.
$$3x - 10y = 15$$
$$5x + 4y = 22$$

2.
$$2x + y = 0.3$$
$$3x - y = -1.3$$

$$x + y - z = 2$$

3.
$$2x-y+z=-5$$

 $x-2y+3z=4$

$$2x-3y+4z=10$$
4. $6x-9y+12z=24$

$$x + 2y - 3z = 5$$

Homework: Textbook p. 646 #s 13-16