

Show all work on a separate sheet of paper. Make sure to study your notes and homework as well.

1. Sketch each function using a minimum of 2 points. For each graph, state the domain, range, intercepts, and the equations of any asymptotes.
volcano
a. $y=\frac{1}{(x+4)^{2}}-2$
left 4
c. $y=\frac{1}{-(x+3)}+1$ rellitarex
il
volcano
b. $y=-\frac{1}{x+2}$
hypubbik lett z
reflect over x
d. $y=-\frac{3}{x^{2}}$ molt. y values by -3
2. Sketch each function. For each graph, state the domain, range, intercepts, coordinates of any holes, and hole $(3,-5)$ the equations of any asymptotes.
hole $(1,3)$
a. $y=\frac{x^{3}-1}{x-1}=\frac{(x-x)\left(x^{2}+x+1\right)}{(x-1) \quad x^{2}+x+\frac{1}{4}-\frac{1}{4}+1} \quad y=\left(x+\frac{1}{2}\right)^{2}+3 / 4$

$$
\begin{aligned}
& \text { d. } y=\frac{2-5 x-3 x^{2}}{x+2}
\end{aligned}
$$

c. $y=\frac{x^{3}-3 x^{2}-4 x+12}{-\left(3 x^{2}+5 x-2\right)^{3}} \quad \frac{\left(x^{2}-4\right)(x-3)}{(3-x)}$
b. $y=\frac{x-4}{x^{2}-16}=\frac{1}{x+4} \quad$ hole $\left(4, \frac{1}{8}\right)$
3. Complete the chart for each of the following:

$$
\frac{-(3 x+1 x+2)}{x+2}=-3 x+1 \quad \text { hole }(-2,7)
$$

$$
\begin{aligned}
& D: x \neq-4 \\
& R: y>-2 \\
& x-\sqrt{2} t \quad(-4 \pm \sqrt{2}, 0) \\
& y-\operatorname{lnt}(0,-31 / 16) \\
& \text { VA: } x=-4 \\
& \text { HA: } y=-2 \\
& \text { OB: } \quad \text { none }
\end{aligned}
$$

$$
D: \quad x \neq-2
$$

$$
\text { R: } \quad y \neq 0
$$

$$
x \text {-int: none }
$$

$$
\begin{aligned}
& y \text {-int: } \quad(0,-1 / 2) \\
& \text { vA } \quad x=-2
\end{aligned}
$$

$$
V A \quad x=-2
$$

$$
\begin{aligned}
& \text { HA } y=0 \\
& \text { OA none }
\end{aligned}
$$

OA none

(d) one y

2(a)
(b)

$$
\begin{aligned}
y=\frac{x^{3}-1}{x-1}=\frac{\left(x+x\left(x^{2}+x+1\right)\right.}{x-1} & =x^{2}+x+1 \\
& =\left(x+\frac{1}{2}\right)^{2}+3 / 4
\end{aligned}
$$

$$
y=\frac{x-4}{x^{2}-16}=\frac{x-4}{(x-4)(x+4)}=\frac{1}{x+4}
$$

$x^{2}(x-3)-4(x-3)$
(c) $y=\frac{x^{3}-3 x^{2}-4 x+12}{3-x}=\frac{\left(x^{2}-4\right)(x-3)}{3-x}=-\left(x^{2}-4\right)=-x^{2}+4$

(d) $y=\frac{2-5 x-3 x^{2}}{x+2}$

