Name:
PC: Solving Systems of Equations Algebraically

Date:
Ms. Loughran

Do Now:

1. Solve the following system of equations:

$$
\begin{aligned}
& y=x+1 \\
& 2 x+y=-2 \quad \rightarrow \quad y=-2 x-2
\end{aligned}
$$

$\underbrace{\text { Substitution }}_{x+1=-2 x-2}$

$$
\begin{gathered}
3 x=-3 \\
x=-1 \\
y=-1+1=0 \\
(-1,0)
\end{gathered}
$$

Models:

1. Solve the system of equations: $\begin{array}{r}-2(3 x+y=3) \\ 7 x+2 y=1\end{array}$

$$
\begin{gathered}
-6 x-2 y=-6 \\
7 x+2 y=1 \\
x=-5 \\
(-5,18) \\
3(-5)+y=3 \\
-15+y=3 \\
y=18
\end{gathered}
$$

Classwork:

1. Solve the system of equations algebraically by and then by elimination:

$$
\begin{aligned}
& 2 x-y=-1 \\
& 2 x+y=-7 \\
& \hline 4 X=-8 \\
& X=-2
\end{aligned} \quad(-2,-3)
$$

$$
\begin{aligned}
2(-2)+y & =-7 \\
-4+y & =-7 \\
y & =-3
\end{aligned}
$$

2. Solve the system of equations algebraically by suse and then by elimination:

$$
\begin{aligned}
& 2 x+2 y=3 \\
& x=4 y-1
\end{aligned}
$$

$$
\begin{aligned}
2(2 x+2 y & =3) \\
x-4 y & =-1 \\
4 x+4 y & =6 \\
x-4 y & =-1 \\
\hline 5 x & =5 \\
x & =1
\end{aligned}
$$

$$
\begin{aligned}
2(1)+2 y & =3 \\
2 y & =1 \\
y & =\frac{1}{2}
\end{aligned}
$$

$$
\left(1, \frac{1}{2}\right)
$$

3. Solve the system of equations algebraically by substitution and then by elimination:

$$
2\left(\begin{array}{l}
x-2 y=3
\end{array}\right)
$$

$$
\begin{array}{r}
2 x-4 y=6 \\
-2 x+4 y=1 \\
\hline 0 \neq 7
\end{array}
$$

no
Solution
why?

$$
\begin{aligned}
& x-2 y=3 \\
& \frac{x-3}{2}=\frac{2 y}{2}
\end{aligned}
$$

$$
\frac{1}{2} x-\frac{3}{2}=y
$$

$$
m=\frac{1}{2}
$$

$$
\begin{gathered}
-2 x+4 y=1 \\
\frac{4 y}{4}=\frac{2 x}{4}+\frac{1}{4} \\
y=\frac{1}{2} x+\frac{1}{4} \\
m=\frac{1}{2}
\end{gathered}
$$

these lines are II, therefore they donor intersect
why?

5. Solve the system of equations algebraically by substitution and then by elimination:

$$
-15 x-10 y=-10
$$

$$
15 x+21 y=-12
$$

$$
11 y=-22
$$

$$
\begin{aligned}
& -5(3 x+2 y=2) \\
& 3(5 x+7 y=-4) \\
& \\
& 3 x+2(-2)=2 \\
& 3 x-4=2 \\
& 3 x=6 \quad(2,-2)
\end{aligned}
$$

$$
y=-2
$$

Summary
For a system of linear equations, there can be:

1. no solution (bc the lines are II)
2. One unique Solution
3. infinitely many solutions (be they are the same line)

Answer the following question on yourindencard;
Which method (surstitutionor elintinationt do your think is easier? Explain ty 1

Name: \qquad Kl
PC: Solving Raffional Equations and Inequalities Graphically Homework
Date: \qquad
Please answer BOTH questions showing all necessary steps in the spaces provided on this sheet. It will be collected tomorrow.

1. Solve the following equation graphically by doing each of the following:
(a) Draw a complete graph of the function showing all intercepts and asymptotes.
(b) Write the window settings you use on your graph:
(c) Find the solution set

- need to

Change standard
window

$$
\frac{10}{x^{2}}+\frac{30}{(10-x)^{2}}=4
$$

$$
\frac{10}{x^{2}}+\frac{30}{\left(10-x^{2}\right)}-4=0
$$

prs: $\chi=0,10$

$$
E B: y=0+0-4=-4
$$

10
 places
2. Solve the following rational inequality below graphically by doing the following:
(a) Draw a complete graph of the function showing all intercepts and asymptotes.
(b) Write the window settings you use on your graph.
(c) (Optional) Using your graph, draw a number line with critical points that shows the values of x that satisfy the inequality.
(d) State the solution set using both set builder notation and interval notation.

$$
\frac{2}{x}+\frac{1}{2 x} \leq 7
$$

$$
\frac{2}{x}+\frac{1}{2 x}-7 \leq 0
$$

PA: $X=0$

$$
E B: y=0+0-7=-7
$$

$$
(-\infty, 0) \cup[.357, \infty)
$$

