Name:	Date:
PC : Operations on Matrices	Ms. Loughran

Two matrices are equal if they have the same order $m \times n$ and their corresponding entries are equal.

1. Solve for a_{11}, a_{12}, a_{21} , and a_{22} in the following matrix equation.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -3 & 0 \end{bmatrix}$$
$$a_{11} = 2 \qquad a_{12} = -1$$
$$a_{21} = -3 \qquad a_{22} = 0$$

Matrix Addition

You can add two matrices (of the same order) by adding their corresponding entries. The sum of two matrices of different orders is undefined.

2.
$$\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ -1 & 3 \end{bmatrix}$$

3. $\begin{bmatrix} 0 & 1 & -2 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 2 & 3 \end{bmatrix}$
4. $\begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
5. The sum of $A = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 3 & -2 & 2 \end{bmatrix}$ and $B \begin{bmatrix} 0 & 1 \\ -1 & 3 \\ 2 & 4 \end{bmatrix}$ is undefined ble the dimensions are not the same

Scalar Multiplication

In work with matrices, numbers are usually referred to as scalars. For our purposes, scalars will always be real numbers. You can multiply a matrix A by a scalar c by multiplying each entry in A by c.

The symbol -A represents the scalar product (-1)A. Moreover, if A and B are of the same order, A-B represents the sum of A and (-1)B. That is,

A - B = A + (-1)B (Subtraction of matrices)

6. For the following matrices, find (a) 3A(b) -B(c) 3A-B

	2	2	4]		2	0	0	
<i>A</i> =	-3	0	-1	and $B =$	1	-4	3	
	2	1	2		1	3	2	

a)
$$_{3A} = \begin{bmatrix} 6 & 6 & 12 \\ -9 & 0 & -3 \\ 6 & 3 & 6 \end{bmatrix}$$
 b) $_{-B} = \begin{bmatrix} -2 & 0 & 0 \\ -1 & 4 & -3 \\ 1 & -3 & -2 \end{bmatrix}$

c)
$$_{3A-B} = \begin{bmatrix} 4 & 6 & 12 \\ -10 & 4 & -6 \\ 7 & 0 & 4 \end{bmatrix}$$

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be $m \times n$ and let c and d be scalars.

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. (cd)A = c(dA)
- 4. IA = A

5.
$$c(A+B) = cA + cB$$

$$6. \quad (c+d)A = cA + dA$$

- (commutative pup) of matrix addition (associative prp.of) matrix addition
- (associative prop. of) Scalar multiplication

7.
$$\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

8. Solve for X in the equation 3X + A = B, where

$$3X + A = B$$

$$3X = B - A$$

$$X = \frac{B - A}{3}$$

$$X = \frac{A}{3}(B - A)$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 4 \\ 2 & 1 \end{bmatrix}.$$

$$-A = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$$

$$B - A = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$$

$$B - A = \begin{bmatrix} -4 & 6 \\ 2 & -2 \end{bmatrix}$$

$$\frac{1}{3}(B - A) = \begin{bmatrix} -4 & 6 \\ 2 & -2 \end{bmatrix}$$

_

Matrix Multiplication

To find the entries of the product, multiply each row of A by each column of B. Note that the number of columns of A must be equal to the of rows of B.

9. Find the product *AB* where

2

$$AB = \begin{bmatrix} (-1)(-3) + 3(-4) & (1)(2) + 3(1) \\ 4(-3) + (-2)(-4) & 4(2) + (-2)(1) \\ 5(-3) + 0(-4) & 5(2) + 0(1) \end{bmatrix} AB = \begin{bmatrix} -9 & 1 \\ -4 & 6 \\ -15 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 3+0 & 0+4 \\ -2+0 & 0+5 \end{bmatrix}$$

$$12. \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}$$
$$\begin{bmatrix} I(-1) + 2(J) & J(2) + 2(-1) \\ J(-1) + J(1) & J(2) + J(-1) \end{bmatrix}$$

$$\begin{array}{c}
3 \times 1 \\
14. \\
\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \times 3 \\ -2 & -3 \end{bmatrix} = \\
\begin{array}{c}
3 \times 3 \\
2 & -4 & -6 \\
-1 & 2 & 3 \\
1 & -2 & -3 \\
\end{bmatrix}$$

$$\begin{bmatrix} 2(1) & 2(-2) & 2(-3) \\
-1(1) & -1(-3) & -1(-3) \\
1(1) & 1(-2) & 1(-3) \\
\end{array}$$

undefined

Classwork 02-16

